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Preface These notes have been written to prepare the lecture course Image and Surface Processing which we
taught at the Institute for Numerical Simulation, University of Bonn, in summer term 2018.
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0 Introduction
Surface processing. The primal focus of the first part of this course is the mathematical foundation of deforma-
tions and modeling tasks (animation) of complex geometric objects represented as discrete surfaces, i.e. triangle
meshes. In particular, we are interested in dynamics i.e. deformation paths and nontrivial motions. To this end,
we assume that we are already given a nice triangulation (parametrization) without topological errors, geometrical
noise or mesh artefacts. To enable efficient algorithms we build on state-of-the-art simplification and approxima-
tion techniques to design a hierarchical/multiresolution method.

In detail, we will investigate:

• local geometry: geometric quantities on a single (discrete) surface, in particular the notion of discrete cur-
vature

• physics: nonlinear deformations based on a physically sound thin shell model and a corresponding discrete
analgon (discrete shells)

• global geometry and dynamics: deformation paths and navigation in the space of discrete surfaces which is
considered as a Riemannian manifold
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1 Smooth and discrete surfaces
There are two major classes of surface representations: explicit (or parametric) and implicit surfaces. Parametric
surfaces are defined by a vector-valued parametrization function

f : Ω ⊂ R2 → R3 ,

that maps a two-dimensional domain Ω ⊂ R2 to the surface

S = f(Ω) .

Implicit surfaces are defined as the zero-levelset of a scalar valued function

F : R3 → R ,

such that

S = {x ∈ R3 : F (x) = 0} .

Example (Torus, 0 < r < R)

f(θ, φ) =

(R+ r cos θ) cosφ
(R+ r cos θ) sinφ

r sin θ

 , (θ, φ) ∈ Ω = [0, 2π)2 ,

F (x, y, z) = (x2 + y2 + z2 +R2 − r2)2 − 4R2(x2 + y2) .

Note: For more complex shapes it is often necessary to split the domain into several patches (consistent/smooth
transition has to be guaranteed, cf. definition of a manifold).

In this course we will focus on parametric surfaces (due to applications considered here!).

1.1 Differential geometry of parametric surfaces
In this chapter we gather basic properties of parametric surfaces S ⊂ R3. For further reading we refer to [Bär00,
dC76] (cf . also third chapter in [BKP+10]).

Definition 1.1. (Regular surface) The set S ⊂ R3 is a regular surface if for each p ∈ S there is an ε > 0, an open
set Ω ⊂ R2 and a smooth mapping x : Ω→ R3, such that

(i) x(Ω) = S ∩Bε(p) and x : Ω→ S ∩Bε(p) is a homeomorphism.

(ii) The Jacobi matrix Dξx ∈ R3,2 has rank 2 for each ξ ∈ Ω.

Remark: In the following we will assume that ε is large enough such that S ∩ Bε(p) = S, i.e. there is a global
parametrization x : Ω→ S.

Let us consider some ξ = (ξ1, ξ2) ∈ Ω and let p = x(ξ) ∈ S. Then we define

TpS = { γ̇(0) | γ : (−1, 1)→ S, γ(0) = p} .

Note that by the same definition we have

TξΩ = {α̇(0) |α : (−1, 1)→ Ω, α(0) = ξ} = R2 .

If we consider α : (−1, 1)→ Ω with α(0) = ξ and γα := x ◦ α we have γ̇α(0) = Dxα̇(0) and get

TpS = DxTξΩ = span{∂ξ1x(ξ), ∂ξ2x(ξ)} .

In the following, we will denote the tangent vectors

Vi = ∂ix(ξ) = ∂ξix(ξ) =
∂x(ξ)

∂ξi
= Dxei, i = 1, 2 ,

as canonical basis of TpS , where e1, e2 ∈ R2 are the standard basis vectors of R2.
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1.2 First and second fundamental forms
Definition 1.2 (First fundamental form). The first fundamental form in p ∈ S is given by

gp : TpS × TpS → R, gp(U, V ) := 〈U, V 〉R3 .

After choosing a basis of TpS—here and in the following the canonical basis (V1, V2)—we can represent gp by a
symmetric, positive-definite matrix g = gξ ∈ R2,2 with

gij = gp(Vi, Vj) = 〈Vi, Vj〉R3 , (1.1)

i.e. we have g = DxTDx. The pull-back of gp to the parameter domain Ω ⊂ R2 is defined as

gξ(u, v) = gp(Dxu,Dx v) = uT gv , u, v ∈ TξΩ = R2 .

Geometrically, the first fundamental form is necessary to measure on the surface, e.g. to determine lengths of
curves or angles between tangent vectors. Let γα = x ◦ α be as above, then the length of γα is defined as

L[γα] =

∫ 1

−1

|γ̇α(t)| dt =

∫ 1

−1

√
〈Dxα̇(t), Dxα̇(t)〉R3 dt =

∫ 1

−1

√
〈DxTDxα̇(t), α̇(t)〉R3 dt ,

where we actually have Dx = Dx(α(t)).

To simplify notation, we will often drop the index and write g = gp or g = gξ, respectively. In particular, g refers
to the bilinear form as well as to its representative matrix in R2,2. Note that g ∈ R2,2 is invertible, since S ⊂ R3

is assumed to be regular.

For some A ⊂ Ω and for some function ϕ : S → R we have∫
x(A)

ϕda =

∫
A

(ϕ ◦ x)(ξ)
√

det gξ dξ ,

and in particular for ϕ ≡ 1 we get

vol(x(A)) =

∫
A

√
det gξ dξ .

Differentiation. For a function ϕ : S → R we define the differential dpϕ as a linear form acting on tangent
vectors V ∈ TpS as directional derivative, i.e.

dpϕ(V ) :=
d

dt
ϕ(γ(t))

∣∣∣
t=0

for an arbitrary curve γ : (−1, 1)→ S with γ(0) = p and γ̇(0) = V . For a vector-valued deformation φ : S → R3

the definition above holds for each component of φ = (φ1, φ2, φ3). In particular, dpφ defines a linear map between
the tangent spaces, i.e.

dpφ : TpS → Tφ(p)φ(S) .

Definition 1.3 (Normal field). Let S2 ⊂ R3 be the 2-dimensional unit sphere. The (unit) normal field of S is a
mapping n : S → S2 with n(p) ⊥ TpS for all p ∈ S . We say that S is orientable if there is a continuous normal
field. In particular, as rank(Dx) = 2, we will write

n(p) = (n ◦ x)(ξ) =
x,1 × x,2
|x,1 × x,2|

(ξ) .

Definition 1.4. (Shape operator) Let S ⊂ R3 be regular and orientable, p ∈ S . The shape operator Sp : TpS →
TpS at p is the linear mapping defined via Sp(U) = dpn(U) for U ∈ TpS.

Remark: As Tn(p)S
2 = n(p)⊥ = TpS the shape operator Sp is indeed an endomorphism on TpS.
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Definition 1.5. (Second fundamental form) Let S ⊂ R3 be regular and orientable, p ∈ S. The second fundamental
form h = hp is the bilinear form on TpS associated with Sp, i.e.

hp(U, V ) := gp(SpU, V ) , U, V ∈ TpS .

The corresponding matrix representation h = hξ ∈ R2,2 is given by

hij = hp(Vi, Vj) = gp(SpVi, Vj) = 〈dpn∂ix, ∂jx〉R3 = 〈∂i(n ◦ x), ∂jx〉R3 . (1.2)

Note that since n(p) ⊥ TpS we have

0 = ∂ξi

(
gp(n ◦ x, ∂jx)

)
= gp (∂i(n ◦ x), ∂jx) + gp ((n ◦ x), ∂i∂jx) = hp(Vi, Vj) + gp

(
(n ◦ x), ∂2

ijx
)
,

hence h ∈ R2,2 is symmetric and we have

hij = −〈n ◦ x, ∂2
ijx〉R3 .

Finally, we can represent the (symmetric) matrix h ∈ R2,2 by

h = DnTDx , Dn =

[
∂n(p)

∂ξ1
,
∂n(p)

∂ξ2

]
∈ R3,2 .

If we write Sp in the canonical basis (V1, V2), i.e.

SpVi =

2∑
k=1

skiVk

for i = 1, 2, the coefficient matrix s = sξ ∈ R2,2 is the representation of Sp in the parameter domain. Since

hij = gp(SpVi, Vj) = gp

( 2∑
k=1

skiVk, Vj

)
=

2∑
k=1

ski gp

(
Vk, Vj

)
=

2∑
k=1

skigkj ,

we get h = sT g, i.e. due to the symmetry of g and h we have

sξ = g−1
ξ hξ . (1.3)

Remark on notation: Sp denotes either the endomorphism on TpS or the corresponding matrix Sp ∈ R3,3, whereas
s ∈ R2,2 denotes the matrix representation of Sp in the canonical basis.

Since g and h are symmetric forms on TpS we get for U, V ∈ TpS

gp(SpU, V ) = hp(U, V ) = hp(V,U) = gp(SpV,U) = gp(U, SpV ) ,

which means that Sp is symmetric with respect to the metric. Hence Sp and thus sξ diagonalize in an orthonormal
basis.

Definition 1.6 (Curvatures). The eigenvalues κ1, κ2 of sξ are denoted as principal curvatures of S in p = x(ξ).
The mean curvature in p is defined as the sum Hp = tr sξ = κ1 + κ2 and the Gaussian curvature in p as the
product Kp = det sξ = κ1 · κ2.

Note that detSp = 0 since there is no normal variation in normal direction, hence the eigenvalues of Sp are given
by 0, κ1, κ2.

The normal curvature of p ∈ S in some direction U ∈ TpS is defined as

κp(U) =
hp(U,U)

gp(U,U)
.

Intuitively, κp(U) describes the curvature of a curve γ : I ⊂ (−1, 1)→ S with γ(0) = p and γ(I) = S ∩ (TpS)⊥

at t = 0. If one obeys the ordering convention κ1 ≤ κ2, one can show that

κ1 = min
U∈TpS

κp(U) , κ2 = max
U∈TpS

κp(U) .
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1.3 The relative shape operator
Later, we aim at measuring differences between two (discrete) surfaces up to rigid body motions. That means, if
S ⊂ R3 is a parametric surface and φ : S → R3 is a deformation, we aim at quantifying the dissimilarity of S and
S̃ := φ(S) up to rigid body motions.

Theorem 1.7 (The Fundamental Theorem of Surfaces). Congruent parametric surfaces in R3 have the same
first and second fundamental forms. Conversely, two parametric surfaces in R3 with the same first and second
fundamental forms are congruent.

Hence the theorem above suggests to measure differences of first fundamental forms g and g̃ as well as second
fundamental forms h and h̃ of S and S̃, respectively. First, it is easy to see that g = g̃ if DφTDφ = 1. Indeed,
if x : Ω → R3 is a parametrization of S then x̃ = φ ◦ x is a parametrization of S̃, and hence g̃ = Dx̃TDx̃ =
DxTDφTDφDx. Second, since the shape operator represents the second fundamental form in the metric, one
often penalizes deviations in the shape operator. Furthermore, if g = g̃ then h = h̃ iff. s = s̃, cf. (1.3). In the most
general setup one aims at comparing the embedded shape operators Sp : TpS → TpS and S̃p̃ : Tp̃S̃ → Tp̃S̃, for an
arbitrary point p ∈ S and p̃ = φ(p). However, since these operators live on different tangent spaces one defines:

Definition 1.8 (Pulled-back shape operator). The pulled-back shape operator S∗p [φ] : TpS → TpS is given by

gp
(
S∗p [φ]U, V

)
= hφ(p) (DφU, DφV ) , ∀U, V ∈ TpS . (1.4)

Definition 1.9 (Relative shape operator). The relative shape operator Srel
p [φ] is defined as the pointwise difference,

i.e.
Srel
p [φ] : TpS → TpS , Srel

p [φ] := Sp − S∗p [φ] . (1.5)

The matrix representations s∗ξ [φ] ∈ R2,2 and srel
ξ [φ] ∈ R2,2 of S∗p [φ] and Srel

p [φ], respectively, are given by

s∗ξ [φ] = g−1
ξ h̃ξ , srel

ξ [φ] = sξ − s∗ξ [φ] = g−1
ξ (hξ − h̃ξ) . (1.6)

Remark: The fundamental theorem of surfaces provides a geometric argument why to measure differences in first
and second fundamental forms. Later, we will also consider a physical justification.

1.4 Intrinsic vs. extrinsic surface quantities
Definition 1.10. (Isometric surfaces) A differentiable mapping φ : S → S̃ between two surfaces S ⊂ R3 and
S̃ ⊂ R3 is a local isometry, if for each p ∈ S the differential dpφ : TpS → Tφ(p)S̃ is a linear isometry with respect
to the first fundamental forms, i.e.

gp(V,W ) = g̃φ(p)

(
dpφ(V ), dpφ(W )

)
∀V, V ∈ TpS .

If a local isometry φ : S → S̃ is bijective we say that φ is an isometry. If there is an isometry φ : S → S̃, then the
two surfaces S, S̃ are said to be isometric.

A quantity of a surface, e.g. some function fS : S → R, is said to be intrinsic, if it is not distorted under local
isometries, i.e. we have fS = fS̃ ◦ φ for every local isometry φ : S → S̃. Otherwise, a surface quantity is said to
be extrinsic.

Remark: An intrinsic quantity only depends on the first fundamental form.

Obviously, the first fundamental form is intrinsic, as well as the Laplace-Beltrami operator. However, mean cur-
vature (and thus also the principle curvatures) is an extrinsic quantity, as, for example, H ≡ 0 for the plane but
H ≡ 1 for the cylinder, whereas plane and cylinder are locally isometric. Likewise, the second fundamental form
as well as the shape operator are also extrinsic quantities. However, the Gaussian curvature is not extrinsic:

Theorem 1.11 (Theorema egregium (Gauss)). The Gaussian curvature is an intrinsic invariant of a surface.
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This implies that the sphere cannot be unfolded onto a flat plane without distorting the distances, i.e. a sphere and
a plane are not isometric, even locally. This fact is of enormous significance for cartography: it implies that no
planar (flat) map of Earth can be perfect, even for a portion of the Earth’s surface.

Later, we want to quantify distortions induced by isometric deformations. The results above imply that this can be
done by measuring differences in shape operators (in a suitable matrix norm) or, even simpler, differences in mean
curvature. On the other hand, measuring differences in Gaussian curvature does not make sense due to Gauss’
theorem. Hence a particular focus will be on deriving a discrete notion of mean curvature whereas the discrete
notion of Gaussian curvature is less important.

Nevertheless, an important property of Gaussian curvature of an surface is the relation to its topology as stated in
the Gauss-Bonnet theorem:

Theorem 1.12 (Theorem of Gauss-Bonnet). For a compact, orientable, closed surface S ⊂ R3 we have∫
S
K da = 2π · χS ,

where the Euler-characteristic χS ∈ N is given as χS = 2(1− g), where g denotes the genus of the surface here.

1.5 Unstructured triangle meshes
A natural choice for parametrizing functions are polynomials, because they can be evaluated by elementary arith-
metic operations. Furthermore, due to the Weierstrass Theorem, each smooth function can be approximated by a
polynomial up to any desired precision (on a compact domain). From Taylor’s theorem we know that a smooth
function on a compact interval of length h can be approximated by a polynomial of degree p such that the approx-
imation error behaves like O(hp+1). As a consequence, there are two possibilities to improve the accurancy of the
approximation: one can either raise the degree of the polynomial (p-refinement) or partition the domain in small
patches, i.e. use more segments for the approximation (h-refinement).
In Geometry Processing applications one usually prefers h-refinement. With the today’s computer architecture,
processing a large number of of simple objects is often easier and more efficient that processing a smaller number of
more complex objects. This leads to the somewhat extremal choice of C0 piecewise linear surface representations,
i.e. polygonal meshes, which have become the widely established standard in geometry processing.
Hence we consider p = 1 and h → 0, i.e. we are dealing with an approximation power of O(h2) which is con-
trolled by second-order information of the surface, i.e. curvature bounds.

Unstructured triangle meshes allow for arbitrary connectivities. Furthermore, geometric details, feature creases etc
can be represented easily, hence unstructured meshes provide a higher flexibility and still allow for efficient surface
processing. A triangle meshMh consists of geometric and topological components, whereas the latter one can be
represented by a graph structure, i.e. we have a set of vertices

V = {v1, . . . , vn}

and a set of triangular faces

F = {f1, . . . , fm} ⊂ V × V × V .

Based on V and F one can deduce a set of edges

E ⊂ V × V .

The geometric embedding of a triangle mesh is given by a mapping

E : V → R3 , E(vi) = Xi .

An important topological quality of the mesh is whether or not it is a (discrete) 2-manifold. This is the case if it
contains neither non-manifold edges nor non-manifold vertices nor self-intersections.

8



The famous Euler formula states an interesting relation between the number of vertice, faces and edges in a closed
and connected (but otherwise unstructured) mesh:

χMh
:= |V|+ |F| − |E| = 2(1− g) , (1.7)

where g is here the genus of the surface (intuitively, the genus counts the number of handles of a surface). Since
for most applications g is small, one can neglect the left hand side. Furthermore, as each edge is incident to two
faces and each face has three edges, we have 3|F| = 2|E| and one can deduce the following mesh statistics:

• the number of triangles is twice the number of vertices, i.e. |F| ≈ 2 |V|,

• the number of edges is three times the number of vertices, i.e. |E| ≈ 3 |V|,

• the average vertex valence (number of incident edges) is 6.

As mentioned above, a triangular mesh is uniquely determined by its geometry and its connectivity. The geometry
is described by the embedding E : V → R3, i.e. the coordinates of the vertices, and the connectivity is encoded
in the set of faces F ⊂ V × V × V or equivalently in the set of edges E ⊂ V × V . Note that all further structural
properties of the mesh, such as neighbouring relationships, boundary etc., can be derived fromF or E , respectively.

Geometry. If n ∈ N denotes the number of vertices in the mesh, we often identify a vertex Xi = E(vi) with
vi ∈ V or with its global index i ∈ {1, . . . , n}. Likewise, if m ∈ N denotes the number of faces in the mesh,
we often identify a face fj ∈ F with its global index j ∈ {1, . . . ,m}. Moreover, we might represent a face
f = (i0, i1, i2) by its embedded triangle T = T (f), i.e.

T = T (f) = (E(vi0), E(vi1), E(vi2)) = (Xi0 , Xi1 , Xi2) ⊂ R3 . (1.8)

Besides its global index i ∈ {1, . . . , n}, each vertex X = Xi belongs to at least one face f , hence it has an
additional local index j ∈ {0, 1, 2} with respect to f . That means, we sometimes rewrite (1.8) as

T = T (f) =
(
X0(f), X1(f), X2(f)

)
⊂ R3 . (1.9)

Analogously, each edge E of a mesh belongs to at least one face and hence it also has a local index j ∈ {0, 1, 2}
with respect to f , i.e. E = Ej(f). Moreover, we make use of the convention that an edge with local index j (wrt.
face f ) connects the nodes with local indices j − 1 and j + 1 (wrt. face f ), where the notation is modulo 3, i.e.

Ej = Xj−1 −Xj+1 , j ∈ {0, 1, 2} mod 3 .

That means Ej is opposite Xj in face f , if j is the local index wrt. face f . In the following, it will be clear from
the context if we are referring to the global or local index of a vertex or edge, respectively.

Topology. We assume that each mesh is a two-dimensional discrete manifold, or (discrete) 2-manifold, in the
sense of [DKT08]. This is the case if it contains neither non-manifold edges nor non-manifold vertices nor self-
intersections. That means for example, that any pair of triangles either shares one edge or one node or that their
intersection is empty. In particular, we do not allow for hanging nodes, i.e. nodes that do not belong to any face, or
degenerated faces, i.e. faces with less than three different nodes.

Orientation. The order of the local indices of nodes within one face determines the orientation of the face and
hence of the mesh. Since we only consider (approximations of) orientable surfaces we assume that all local indices
are ordered consistently.

Definition 1.13 (Discrete surface). A discrete surface is a triangular meshMh = (V,F , E) along with an injective
embedding E : V → R3, such thatMh is a discrete 2-manifold which is orientable (i.e. has consistent local index
ordering).

Remark: A discrete surface is entirely described by the pairingMh = (E(V),F), where E(V) ∈ R3n.
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Parametrization. We assume that each discrete surfaceMh is parametrized over a reference or parameter do-
main Ωh. Yet different from the continuous setting this reference domain is not a connected subset ofR2 but rather
an abstract collection of multiple reference triangles as it is often used in the context of subdivision surfaces (cf .
[Rei95]). Thus each face f ∈ F ofMh, with the corresponding embedded/geometric triangle T = T (f) as in
(1.8) resp. (1.9) is parametrized over a reference triangle given by the unit triangle

ω :=
(( 0

0

)
,

(
1
0

)
,

(
0
1

))
⊂ R2

via an affine mapping Xf : ω → T , which is defined by

Xf (ξ) := Xf (ξ1, ξ2) := ξ1X1(f) + ξ2X2(f) + (1− ξ1 − ξ2)X0(f) (1.10)

for the barycentric coordinates ξ ∈ ω, i.e. ξ = (ξ1, ξ2) with 0 ≤ ξ1, ξ2 ≤ 1 and ξ1+ξ2 ≤ 1. Formally, the reference
domain is given by Ωh = ω × F , a global parametrization via X : (ξ, i) 7→ Xfi(ξ). Wherever it is possible, we
drop the dependence of the local parametrization X on the face fj in the following and write X = Xfj .

Discrete first fundamental form. Let S ⊂ R3 be a regular embedded surface with (local) parametrization
x : Ω → S and ξ ∈ Ω. Following Def. 1.2 resp. (1.1) we can represent the first fundamental form g at some point
x(ξ) by the matrix gξ = Dx(ξ)TDx(ξ). According to (1.10), the local parametrization X of a a discrete surface
Mh is affine, hence its derivative is constant on each triangle f ∈Mh, i.e.

DX|f =

(
∂Xf

∂ξ1
,
∂Xf

∂ξ2

)
=
[
X1(f)−X0(f)

∣∣∣X2(f)−X0(f)
]

=
[
E2(f)

∣∣∣ − E1(f)
]
∈ R3,2 . (1.11)

Hence the definition of an elementwise constant discrete first fundamental form follows canonically:

Gf = (DX|f )TDX|f ∈ R2,2 , f ∈ F . (1.12)

To simplify notation we will often drop the dependence on f and write G = Gf . Note that detGf = 0 iff. f
has parallel edges, which is not admissible due to the assumption that Mh is a discrete 2-manifold. Hence Gf
is invertible for each f ∈ F . Furthermore, we get the following formula for the area af = |T | of an embedded
triangle:

af =

∫
T

da =

∫
ω

√
detGf dξ =

1

2

√
detGf . (1.13)

1.6 Discrete differential geometry
Differential and geometric quantities defined on a surface require the surface to be sufficiently smooth, e.g. the
definition of curvatures requires the existence of second derivatives. Since polygonal meshes are piecewise affine
and globally only of class C0, many of the concepts presented in Sec. 1.1 can not be applied directly. However,
usually a discrete surface (i.e. a polygonal mesh) is assumed to be an approximation of a smooth surface. Hence
one aims to compute approximations of differential and geometric properties of the smooth surface directly from
the mesh data. This leads to the derivation of discrete equivalents of the geometric notions of classical differential
geometry. In particular, the study of the discrete equivalents themselves defines a new and active mathematical
field, namely Discrete Differetial Geometry (DDG). The guiding principles of DDG:

• Weak/integrated notions Higher order quantities, such as curvatures, are defined in an integrated or weak
sense. In particular, on general meshes convergence is mostly shown in a weak or integrated sense.

• Spatial averaging To get a pointwise evaluation, e.g. at a vertex, one computes the integrated quantity in a
neighbourhood of that vertex and divides by the associated area (cf. [MDSB02])

• Attach quantities to appropriate locations, i.e. associate physical/geometric quantities at their natural
locations, not necessarily at vertices. Here the field of Discrete Exterior Calculus (DEC) is an appropiate
tool (not considered here, cf. [DKT08, Hir03, DHLM05]).

• Discretize theory, not equations! That means, one aims at a consistent discrete theory. To ensure the
existence of fundamental properties (e.g. Gauss-Bonnet), one often uses top-down instead of bottom-up
approaches, e.g. one directly defines a notion of discrete curvature without having a notion of a discrete
normal field in the first place.
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In later applications we primarily want to make use of extrinsic curvature measures, i.e. we focus here mainly on
a discrete notion of mean curvature and the shape operator.
Having in mind Gauss’ Theorema Egregrium, a simple consideration of two triangles glued together at one edge
reveals that on a discrete surface:

• mean curvature is concentrated at edges,

• Gaussian curvature is concentrated at vertices.

Hence, a shape operator is also naturally associated with edges. Nevertheless, discrete shape operators are often
associated with a triangle by taking into account the bending accross the three edges. Finally, one can also define
shape operators on vertices e.g. by averaging over adjacent edges. In the following, after having introduced several
concepts of normals on a mesh, we consider vertex-based and edge-based curvature quantities, where the primal
focus is on the latter one.

Normals First, we define the weighted face normal Ñf ∈ R3 resp. the unit face normal Nf ∈ S2 on a triangle
T (f) = (X0, X1, X2) by

Ñ(f) = Ñf = (X1 −X0)× (X2 −X0) , N(f) = Nf =
(X1 −X0)× (X2 −X0)

‖(X1 −X0)× (X2 −X0)‖
.

Since extrinsic bending is naturally measured across edges, a normal field associated with edges is a canonical
choice. Usually, these edge normals are located at edge midpoints and computed as weighted average of the
adjacent triangle normals, i.e. if fl and fr are the adjacent faces of some edge E we set

NE =
αlNfl + αrNfr
‖αlNfl + αrNfr‖

, (1.14)

where the weights might be chosen e.g. as αr = αl = 1/2. Another ansatz for defining an edge normal is given
by postulating NE ⊥ E and then parametrizing NE via the angle e.g. between NE and N(fs), where s ∈ {l, r}.
Computing vertex normals as spatial averages of face normals (alternatively, of edge normals) in a local 1-ring
neighbourhood leads to normalized weighted average of the (constant) face normals, i.e.

N(v) = Nv =

∑
f∈N1(v) αfNf

‖
∑
f∈N1(v) αfNf‖

.

There are numerous alternatives for the weights αf , e.g. αf = 1 or αf = af or αf = γf , where γf is the interior
triangle angle in f at vertex v. For most applications, the latter angle-weighted vertex normal provides a good
trade-off between computational efficiency and accurancy.

Discrete Gauss Curvature As mentioned above, discrete Gaussian curvature is supposed to be concentrated at
vertices. Following the principles of DDG, one defines the discrete Gaussian curvature such that a discrete version
of Gauss-Bonnet holds. That means for some areaAv associated with some vertex v ∈ V one defines an integrated
Gaussian curvature by the so-called angle-defect, i.e.∫

Av

Kh(x) da := 2π −
∑
f :v∈f

γf , (1.15)

where γf denotes the interior triangle angle in f at vertex v, and verifies immediately∫
Mh

Kh(x) da =
∑
v∈V

∫
Av

Kh(x) da = 2π|V| −
∑
v∈V

∑
f :v∈f

γf = 2π (|V| − 1

2
|F|) = 2π (|V|+ |F| − |E|) ,

where we have used
∑
v:v∈f γf = π as well as 3|F| = 2|E| in the last step. Cohen-Steiner and Morvan [CSM03]

prove the convergence of (1.15) to its continuous counterpart (in an integrated sense!). Following the paradigm of
spatial averaging one might define Gaussian curvature evaluated at a vertex, i.e.

Kh(v) =

∫
Av
Kh(x) da

|Av|
=

1

|Av|

(
2π −

∑
f :v∈f

γf

)
.
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Edge-based curvature measures As mentioned above a discrete notion of mean curvature is naturally associated
with edges, more precisely, with the bending between two adjacent faces. Intuitively, the isometric bending of two
adjacent triangles sharing an edge E is captured by the so-called dihedral angle θE , i.e.

θE := ∠
(
N(fl)× E, E ×N(fr)

)
, E = T (fr) ∩ T (fl) .

Hence we have θE = π if N(fl) ‖ N(fr). Since bending in either direction should be penalized equally (in
absolut value) with positive values if θE > π and negative if θE < π, one intuitively expects

HE ∼ −2 cos
θE
2
. (1.16)

Note that sometimes the quantity θE − π is refered to as dihedral angle as well, then (1.16) is usually replaced by
HE ∼ 2 sin θE

2 . A Taylor expansion of (1.16) about π leads to

HE ∼ (θE − π) +O(|θE − π|3) .

Finally, based on HE one can define an edge-based shape operator SE ∈ R3,3 by

SE =
1

3
HE (NE × E)⊗ (NE × E) ,

which satisfies SEE = 0 (no curvature along the edge), SENE = 0 (no bending in normal direction) and
trSE = HE .

The discrete notion of mean curvature as stated in (1.16) can be found in several approaches, cf . e.g. [CSM03,
BMF03, GHDS03, HP04, War06, Sul08], and will be justified in the following. Note, however, that in most
approaches a discrete notion of mean curvature is first derived in an integrated sense, i.e. if dE denotes an area
associated with edge E satisfying E ⊂ dE ⊂ T (fr) ∪ T (fl), one sets∫

dE

HE(x) da := −2 cos
θE
2
‖E‖ .

Convergence results by Cohen-Steiner and Morvan [CSM03] Let V ⊂ R3 a convex body such that S := ∂V
is a smooth and compact surface. For ε > 0 and some area B ⊂ S consider the offset

Vε(B) = {x+ ε t n(x) : x ∈ B, t ∈ [0, 1]} .

Then Steiner’s tube formula reads (cf . [CSM03, Sul08])

|Vε(B)| = ε

∫
B

da+
1

2
ε2
∫
B

H da+
1

3
ε3
∫
B

K da , (1.17)

which can be re-formulated as ∫
B

H da = 2ε−2
(
|Vε(B)| − ε |B|

)
+O(ε) . (1.18)

Now let Bh ⊂ Mh. For illustrative reasons, we first consider Bh = T1 ∪ T2. If E = T1 ∩ T2, then we postulate
θE > π since Bh is supposed to be (part of) the boundary of a convex body. For some ε > 0 we define the offset
Vε(Bh) in a canonical way. If βE denotes the angle between N(f1) and N(f2) we get

|Vε(Bh)| − ε |Bh| =
βE
2π
· ε2π · ‖E‖,

which represents a βE/(2π)-fraction of the volume of a cylinder of height ‖E‖ and radius ε. Using (1.18) with
βE = θE − π suggests the definition ∫

Bh

Hh da := (θE − π) ‖E‖ .

12



For arbitrary Bh ⊂ T1 ∪ T2 one obtains analogously∫
Bh

Hh da := (θE − π) ‖E ∩Bh‖ ,

and for arbitrary Bh ⊂Mh one obtains∫
Bh

Hh da =
∑
E⊂Bh

(θE − π) ‖E ∩Bh‖ +O(ε),

since the cone-like volume Vε(Bh) sitting at a vertex is given by a fraction of the ball of radius ε, hence scales as ε3.

Definition [Delaunay triangulation] A Delaunay triangulation for a set of points in R2 is a triangulation such that
no point is inside the circumcircle of any triangle.

Remark: The Delaunay triangulation of a discrete point set P in general position corresponds to the dual graph of
the Voronoi diagram for P . The Voronoi region Vp associated with one point p ∈ P is defined as

Vp = {q ∈ R2 |dist(p, q) ≤ dist(p′, q) ∀p′ ∈ P} .

The Voronoi diagram is simply the tuple of cells Vp for all p ∈ P .

Definition [ε-sample] A point set P ⊂ R3 is an ε-sample of a regular surface S ⊂ R3 if for all p ∈ S

Br(ε,p)(p) ∩ P 6= ∅ ,

where r(ε, p) = ε · dist(p,med(S)), where med(S) denote the medial axis of S.

Cohen-Steiner and Morvan [CSM03] prove the following convergence result:

Theorem [Convergence of weak edge-based mean curvature [CSM03]] Let S ⊂ R3 be a smooth surface, not
necessarily the boundary of a convex body,Mh = (V,F , E) an approximating triangle mesh and ε > 0 sufficiently
small. If the set {E(v)|v ∈ V} is an ε-sample of S and the triangulation ofMh is Delaunay, then for anyBh ⊂Mh∣∣∣∣∣ ∑

E⊂Bh

(θE − π) ‖E ∩Bh‖ −
∫

Φ−1(Bh)

H da

∣∣∣∣∣ = O(ε) , (1.19)

where Φ : S →Mh is the shortest distance map which is a homeomorphism if h is sufficiently small.

Remark: The proof is based on differential 2-forms and geometric measure theory and is beyond the scope of this
course. A similar convergence result is shown for the discrete Gaussian curvature as defined in (1.15), as well as
some discrete seecond fundamental form.

Triangle-averaged discrete shape operator We have already derived a matrix representationG ∈ R2,2 of a dis-
crete first fundamental form that lives in the reference domain. Furthermore, G = Gf is constant on each triangle
f . Hence we aim at defining a matrix representation H = Hf ∈ R2,2 of a discrete second fundamental form that
also lives in the reference domain and is elementwise constant. If we make use of (1.3) we can eventually derive a
matrix representation S = Sf ∈ R2,2 of a discrete shape operator by setting Sf = G−1

f Hf .

Let f ∈ F be an arbitrary triangle of a discrete surface S with a local parametrization X = Xf as defined in
(1.10). Note that we have

∂X

∂ξ1
= X1 −X0 = E2 ,

∂X

∂ξ2
= X2 −X0 = −E1 . (1.20)

Plugging this into (1.2) yields for the entries of H = Hf :

H11 =
〈
dN(E2), E2

〉
R3

H12 = −
〈
dN(E2), E1

〉
R3

H21 = −
〈
dN(E1), E2

〉
R3

H22 =
〈
dN(E1), E1

〉
R3
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For an edge E ∈ Mh we define an edge normal NE by (1.14) using uniform weights αr = αl = 1/2. With nor-
mals associated to edge midpoints, the (discrete) 1-form dN acts on line segments connecting these midpoints1.
For a triangle f with edges E0, E1, E2 we denote the corresponding edge normals by N0, N1, N2 and the connect-
ing line segments by Eij , i.e. Eij connects the midpoint of Ei with that of Ej , cf . Fig. 1. In particular, we have
the vector identity Ek = −2Eij , where k is the complementary index to i and j in f . Using this notation, the
fundamental theorem of calculus implies

dN(Ek) = −2 dN(Eij) = −2

∫
Eij

dN = −2 (Nj −Ni) = 2 (Ni −Nj) . (1.21)

Xi

Xj

Xk

Ei

Ej
Ek

Ni

Nj
Nk

Ei−1 Ei

fihi

Ni

θif

Figure 1: Support of discrete shape operator (left) and geometric interpretation of coefficients (right).

We can use (1.21) to simplify the entries of H = Hf further, i.e.

H11 = 〈dN(E2), E2〉 = 2 〈N0 −N1, E2〉 = 2 〈N0, E2〉+ 2 〈N1, E0〉
H12 = −〈dN(E2), E1〉 = −2 〈N0 −N1, E1〉 = 2 〈N0,−E1〉 = 2 〈N0, E2〉
H21 = −〈dN(E1), E2〉 = −2 〈N2 −N0, E2〉 = 2 〈N0, E2〉
H22 = 〈dN(E1), E1〉 = 2 〈N2 −N0, E1〉 = 2 〈N0, E2〉+ 2 〈N2, E1〉

where we have used 〈Ni, Ei〉 = 0 and E0 + E1 + E2 = 0. Hence we get the representation

H = Hf = 2

2∑
i=0

〈Ni, Ei−1〉Mi ,

with a basis (M0,M1,M2) of symmetric 2× 2 - matrices given by

M0 =

(
1 1
1 1

)
, M1 =

(
1 0
0 0

)
, M2 =

(
0 0
0 1

)
.

In the following, we will interprete the terms 〈Ni, Ei−1〉 geometrically. We refer to the height in f with base Ei
by hi, the neighboring triangle is denoted by fi, i.e. f ∩ fi = Ei, cf . Fig. 1. Then by definition, the dihedral angle
θi at Ei between f and fi is given by two times the angle between hi and Ni, since Ni is the angle bisector of θi
by definition. We further use hi = −Ei−1 + βEi for some β ∈ R and obtain

cos
θi
2

= 〈Ni,
hi
|hi|
〉 = − 1

|hi|
〈Ni, Ei−1〉 + β 〈Ni, Ei〉︸ ︷︷ ︸

=0

.

1A continuous 1-form ω on a surface S is a mapping with ω(p) ∈ T ∗
p S for all p ∈ S, where T ∗

p S is the dual space of TpS. Continuous
1-forms are naturally evaluated as integrals along piecewise differentiable curves γ : [a, b] → S. An important example is given by ω = df ,
where f : S → R is a differentiable function, and

∫
γ ω = f(γ(b)) − f(γ(a)). The concept of Discrete Exterior Calculus (DEC) aims

at deriving a consistent theory of discrete forms on discrete manifolds, i.e. polygonal surfaces with certain properties. Analogously to the
continuous setup, discrete 1-forms (e.g. given as a differential of a discrete function on a discrete manifold) are evaluated as integrals along
discrete curves, i.e. polygonal chains. For further information and a comprehensive introduction on DEC we refer to [Hir03, DHLM05, DKT08].
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Since af := |f | = 1
2 |hi| ‖Ei‖ we have 〈Ni, Ei−1〉 = −2

af
‖Ei‖ cos θi2 , hence

Hf = −4 af

2∑
i=0

cos θi2
‖Ei‖

Mi . (1.22)

Finally, using (1.12), (1.22) and (1.3), we get a matrix representation of our discrete shape operator

Sf = G−1
f Hf ∈ R2,2 . (1.23)

Based on the discrete shape operator, we can now derive a representation of discrete mean curvature. Analogously
to the continous setting, the discrete mean curvature is defined as trSf , hence it is also constant on faces. First,
using (1.12) and (1.20) we get

G−1
f =

1

detGf

(
‖E1‖2 〈E1, E2〉
〈E1, E2〉 ‖E2‖2

)
and due to (1.13) we have detGf = 4a2

f and hence one can easily show tr (G−1
f Mi) = ‖Ei‖2

4 a2f
for i = 0, 1, 2.

Finally, this yields

trSf = tr (G−1
f Hf ) = −

2∑
i=0

cos θi2
af
‖Ei‖ . (1.24)

Remark (Evaluation of embedded discrete shape operator): If we consider the tangent space given by the plane
of T (f) the canonical basis is given by (1.20). Then, by definition, the matrix representation of the embedded
discrete shape operator wrt. that basis is given by Sf ∈ R2,2.

References: The triangle-averaged discrete shape operator has been derived in joint work with Peter Schröder
(Caltech), Max Wardetzky (Göttingen) and Benedikt Wirth (Münster). For further reading we refer to Behrend’s
diploma thesis [Hee11] resp. PhD thesis [Hee16] as well as to the corresponding publications [HRWW12, HRS+14].

Generalization Grinspun et al. [GGRZ06] define a discrete shape operators on general meshes similar to the
triangle-averaged operator introduced above. However, instead of prescribing an edge normal NE to be the angle-
bisecting normal at edge E = T (f) ∩ T ′(f ′) the edge normal is supposed to fulfill NE ⊥ E and is parametrized
over the angle γE between NE and Nf . The vector (γE)E is then considered as another set of degrees of freedom.
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2 Deformations of discrete shells
Eventually, we want to study deformations and deformation paths of discrete surfaces, i.e. triangle meshes. In
applications, e.g. in animation movies, the mesh represents (the boundary/skin of) a complex character and the
deformation path is supposed to describe a natural and non-trivial motion of that character. To obtain intuitive, vi-
sually appealing and natural results one needs to have a physically sound model. To this end, we go one step back
and start the physical modeling in the continuous setup. Discrete surfaces are approximations of regular surfaces
which have the physical interpretation of a thin shell. Vice versa, thin shells are three-dimensional solids with a
high ratio from width to thickness. Mathematically, they are represented as compact embedded surface describing
the midsurface of the material. Finally, this (regular/smooth) midsurface is approximated by a discrete surface.

Usually, one starts with theory of 3D elasticity and investigates deformation energies of some solid Ωδ ⊂ R3 with
δ being a tiny but finite thickness of the material, i.e. Ωδ is a thin shell or plate from the physical point of view.
Then on considers δ → 0 based on a suitable notion of convergence or by further apriori assumptions.

2.1 Elasticity theory
First, we give a survey on the theory of elastic deformations of solid three-dimensional bodies; for further reading
we refer to [Cia88, MH94, Bra07]. Next, we derive a physically sound model for thin plates and shells based
on concepts from 3D elasticity. This summary is based on the comprehensive and detailed descriptions found in
several works by Ciarlet and co-workers [Cia00, Cia05, CM08].

Three-dimensional elasticity. LetO ⊂ R3 be a homogenous2 and solid object with boundary and φ ∈W 1,2(O;R3)
a potentially large and nonlinear deformation. Typically, one assumes that φ is orientation preserving, i.e. detDφ(x) >
0 for all x ∈ O, and injective (i.e., no interpenetration of matter occurs). We postulate the existence of an elastic
deformation energy W[φ,O] associated with the deformation φ. By definition, elastic means that W solely de-
pends on the Jacobian Dφ of φ. Furthermore, for so-called hyperelastic materials, W[φ,O] is the integral of an
elastic energy density W = W (Dφ), i.e.

W[φ,O] =

∫
O
W (Dφ) dx . (2.1)

A fundamental axiom of continuum mechanics is frame indifference, i.e. the invariance of the deformation energy
with respect to rigid body motions. Hence, any coordinate transform x 7→ Qx+ b for a rotation Q ∈ SO(3) and a
shift b ∈ R3 does not change the energy, i.e.

W (Dφ) = W (QTDφQ) ∀Q ∈ SO(3) .

A direct consequence is that W only depends on the so-called right Cauchy–Green strain tensor C[φ] = DφTDφ,
which geometrically represents the metric measuring the deformed length in the undeformed reference configura-
tion. The elastic strain is then defined by the difference E[φ] = 1

2 (C[φ]− 1).

Furthermore, we might assume O to be an isotropic material, i.e. a rotation of the material before applying a
deformation yields the same energy as before, i.e.

W (Dφ) = W (DφQ) ∀Q ∈ SO(3) .

It follows from the Rivlin-Erikson-Theorem [RE55] that the above two conditions lead to the fact that the energy
density W only depends on the singular values λ1, λ2, λ3 of Dφ, the so-called principal stretches. Instead of
the principal stretches, one can equivalently describe the local deformation using the so-called invariants of the
deformation gradient,

I1 = ‖Dφ‖F =
√
λ2

1 + λ2
2 + λ2

3 ,

I2 = ‖cof Dφ‖F =
√
λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 ,

I3 = detDφ = λ1λ2λ3 ,

2This will later result in energy densities that do not depend on x ∈ O.
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where ‖A‖F =
√

tr (ATA) for A ∈ Rd,d and the cofactor matrix is given by cof A = detAA−T for A ∈ GL(d).
Hence there is a function Ŵ : R3 → R with W (Dφ) = Ŵ (I1, I2, I3), where I1, I2, and I3 can be interpreted as
the locally averaged change of an infinitesimal length, area, and volume during the deformation, respectively.

We shall furthermore assume that isometries, i.e. deformations with DφTDφ = 1, are local minimizers with
W (Dφ) = 0. Typical energy densities in this class are given by

W (Dφ) = Ŵ (I1, I2, I3) = a1I
p
1 + a2I

q
2 + Γ(I3) , (2.2)

for a1, a2 > 0 and a convex function Γ : [0,∞) → R with Γ(I3) → ∞ for I3 → 0 or I3 → ∞. In this work we
focus on p = q = 2 which corresponds to the Mooney–Rivlin model [Cia88]. The built-in penalization of volume
shrinkage, i.e. Ŵ (I1, I2, I3) → ∞ for detDφ → 0, enables us to control local injectivity. Incorporation of such
a nonlinear elastic energy allows to describe large deformations with strong material and geometric nonlinearities,
which cannot be treated by a linear elastic approach. A particular choice for a nonlinear elastic energy density was
introduced in [Wir09] (cf . appendix A.1 of [WBRS11]) as

W (Dφ) =
µ

2
‖Dφ‖2F +

λ

4
(detDφ)2 −

(
µ+

λ

2

)
log detDφ− dµ

2
− λ

4
, d ∈ {2, 3} . (2.3)

Remark: The nonlinear elastic energy density (2.3) satisfies the following consistency condition:

W,FF (1)(G,G) = λ(trG)2 +
µ

2
tr ((G+GT )2) .

Furthermore, (2.3) is invariant with respect to rigid body motions, i.e. W (Dφ) = 0 iff. φ(x) = Qx + b with
Q ∈ SO(3).

Variational setup. In elasticity theory one typically considers variational problems as the minimization of

E [φ] =

∫
O
W (Dφ) dx−

∫
O
F (φ(x)) dx−

∫
Γ

G(φ(x)) da , (2.4)

subject to suitable boundary conditions, where F and G represent body and boundary forces, respectively, and
Γ ⊂ ∂O. A corresponding existence theory for hyperelastic materials whose corresponding energy density W
fulfills certain properties was established by John Ball [Bal77].

However, we will utilize W to define an elastic dissimilarity measure between shapes. That means, given two
shapes SA and SB which are supposed to describe two elastic materials OA and OB , we aim at minimizing
φ 7→ W[φ,SA] subject to the constraint φ(SA) = SB . The dissimilarity measure is then given by

d2
elast(SA,SB) = min

φ:φ(SA)=SB

∫
SA
W (Dφ) dx . (2.5)

Towards a two-dimensional theory. Physically, a shell is a three-dimensional body which is very thin in one
dimension. The main objective of elastic shell theory is to predict the stress and the displacement arising in a thin
shell in response to given forces. In a variational setup,
this prediction is made by minimizing a suitable energy
functional. In the following, we show how a simplifica-
tion of the variational setup in three-dimensional elastic-
ity (introduced above) leads to a two-dimensional theory.
This simplification is done by exploiting the special ge-
ometry of the shell, and especially, the assumed ”small-
ness” of the thickness of the shell, denoted by δ > 0,
cf . Fig. 2. Eventually, this assumption allows to elimi-
nate some of the terms of lesser order of magnitude with
respect to the thickness of the shell.

S
Sδ

δ

Figure 2: Elastic shell Sδ ⊂ R3 with finite thick-
ness δ > 0 and midsurface S.

For simplicity, we will first consider plate theories, where the undeformed/reference configuration is flat. In
contrast, in shell theories, the undeformed/reference configuration is already curved, i.e. given by some material
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with midsurface S ⊂ R3. Let ω ⊂ R2 be a domain in the plane, δ > 0, and Ωδ = ω × (− δ2 ,
δ
2 ) ⊂ R3 be a

thickened plate, pδ = (ξ, z) ∈ ω × (− δ2 ,
δ
2 ). A deformation φδ ∈ H1(Ωδ,R

3) of this plate is characterized by a
stored energy functionW as in (2.1), i.e.

W[Ωδ, φδ] =

∫
Ωδ

W (Dφδ) dpδ ,

and the functionalW[Ωδ, φδ] is optimized subject to forces and boundary conditions.

In the two-dimensional approach to shell theory, the above minimization problem is replaced by a (presumably
simpler) two-dimensional problem, which is eventually posed over the middle layer ω ⊂ R2 (resp. middle surface
S ⊂ R3) of the plate (resp. shell). The two-dimensional approach to shell theory yields a variety of different shell
models, which can be classified into two categories:

(i) The first category of models is obtained from the three-dimensional problem formulation by letting the
thickness δ > 0 of the shell go to zero. This can be formulated rigorously by means of Γ-convergence
[DGDM83, Bra02]. Depending on the scaling, boundary conditions and applied forces one obtains either a
so-called membrane shell model [LDR95, LDR96], or a flexual or bending shell model [FJM02a, FJM02b,
FJMM03].

(ii) The second category of models are obtained from the three-dimensional model by restricting the range of
admissible deformations by means of specific a priori assumptions that are supposed to take into account
the smallness of the thickness. For example, the (geometric) Kirchhoff-Love assumptions [Kir50, Lov88],
i.e. (a) any point situated on a normal to the middle surface remains on the normal to the deformed middle
surface after the deformation has taken place and (b) that the distance between such a point and the middle
surface remains constant, combined with mechanical assumption by John [Joh65], i.e. the state of stress
inside the shell is planar and parallel to the middle surface, lead to Koiter’s shell model [Koi66] (see also
[RS10]). More general models of this category are of the Middlin-Reissner type, e.g. the Cosserat model,
which does not postulate the Kirchhoff-Love assumption.

In the following, we will discuss the ansatz-free former concept (i) in detail.

2.2 Membrane and bending energies by Γ-convergence
In this section we discuss the ansatz-free approach by means of Γ-convergence. For an introduction to the concepts
of Γ-convergence we refer to [DGDM83, Bra02]. As mentioned before we first study plate theories derived from
3D elasticity.

Remark: Let us emphasize in particular that we focus on the qualitative understanding of the rigorous derivations,
i.e. we are interested in which objects the limit depends on. These objects will then be used to define a physically
sound dissimilarity measure between two thin shells. Hence we neglect quantitative aspects, e.g. the detailed shape
of limit integrands or values of physical constants in the limit, as these will later be chosen individually for different
applications.

Let ω ⊂ R2 bounded and simply connected, γ := ∂ω Lipschitz. As, we first only consider plates here, that means
the two-dimensional domain ω is flat and not curved. For δ > 0 we define the reference domain of a thin plate by
Ωδ = ω × (− δ2 ,

δ
2 ). The starting point is the elastic energy of a deformation φδ ∈ H1(Ωδ,R

3), i.e.

W[φδ,Ωδ] =

∫
Ωδ

W (Dφ) dpδ (2.6)

for some frame-indifferent elastic energy density W : R3,3 → R which is minimized on SO(3) and fulfills
W (1) = 0 and W (F ) = ∞ if detF ≤ 0. Furthermore, one usually assumes some regularity and certain growth
conditions. Typical energy densities are for instance

• The distance to the special orthogonal group, i.e. W (F ) = dist2(F, SO(3)) ≈ 1
4‖F

TF − 1‖2F .
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• A generic isotropic material is described by the St Venant-Kirchhoff density given by

W StVK(F ) =
λ

8
(tr (FTF − 1))2 +

µ

4
tr (FTF − 1)2 . (2.7)

Note that W StVK(Dφδ) = λ
2 (trE[φδ])

2 + µtr (E[φδ]
2), with E[φδ] = 1

2 (DφTδ Dφδ − 1).

• A general Mooney-Rivlin model:

W (F ) = a‖F‖2F + b‖cof F‖2F + c(detF )2 − d log detF + e ,

with e ∈ R s.t. W (1) = 0. Neo-Hooke material: b = 0.

In the following we will consider the limit behaviour of (2.6) for δ → 0.

An excursion in Γ-convergence.

Definition 2.1 (Γ-convergence). Let (X, d) be a metric space, Fj : X → R a sequence of functionals and

F : X → R. Then Fj Γ-converges to F with respect to d, i.e. Fj
Γ→ F , if

(i) liminf condition. For every sequence (xj)j ⊂ X with d(xj , x)→ 0 for some x ∈ X we have

F [x] ≤ lim inf
j→∞

Fj [xj ] .

(ii) limsup condition/recovery sequence. For each x ∈ X there is a sequence (xj)j ⊂ X with d(xj , x)→ 0 and

F [x] ≥ lim sup
j→∞

Fj [xj ] .

Some remarks on Γ-convergence:

(i) If Fj
Γ→ F then F is lower semi-continuous (w.r.t. d), i.e. if d(xj , x)→ 0 then F [x] ≤ lim infj→∞ F [xj ].

(ii) If Fj
Γ→ F and G is continuous, then Fj +G

Γ→ F +G.

(iii) But, if Fj
Γ→ F and Gj

Γ→ G then not necessarily Fj +Gj
Γ→ F +G.

(iv) If Fj = F for all j, then not necessarily Fj
Γ→ F . (Limit has to be lsc.!)

Note the importance of lsc. functions: The direct method of Calculus of Variations states that if X is a reflexive
Banach space, F is weakly lower semi-continuous and coercive, then F attains its minimum on X .

Example: X = R with d(x, y) = ‖x−y‖, Fj(x) = sin(jx) and F (x) ≡ −1. Then Fj
Γ→ F . The liminf condition

is trivial. Let x ∈ R. Define xj ∈ R s.t. d(x, xj) = min{d(x, y) : sin(jy) = −1}. Then d(x, xj) → 0 and
−1 ≥ Fj(xj), which proves the limsup condition.

A function F is said to be coercive if the following holds: If F [xj ] is bounded, then (xj)j is precompact in X , i.e.
has a converging subsequence. A function F is mildly coercive if infx∈X F [x] = infx∈K F [x] for some compact
set K ⊂ X . A sequence (Fj)j is said to be equi-coercive if the following holds: If Fj(xj) is bounded then (xj)j
is precompact in X . A sequence (Fj)j is said to be equi-mildly coercive if there is some compact set K ⊂ X such
that infxj∈X Fj [xj ] = infxj∈K Fj [xj ] for all j. If F is coercive, then it is mildly coercive.

Some properties related to the existence/computation of minimizers:

(i) Let Fj
Γ→ F , xj minimizer of Fj and xj → x. Then x is minimizer of F and Fj [xj ]→ F [x].

(ii) LetFj
Γ→ F , (Fj)j equi-mildly coercive, then thre is a minimizer x ofF withF [x] = limj→∞ infxj∈X Fj [xj ].

Moreover, if (xj)j is minimizing sequence, then every accumulation point is a minimum point of F .
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Proof (i): Let us assume there is x′ ∈ X with F [x′] < F [x]. Then there is a sequence x′j → x′ with

F [x′] ≥
Def.2.1(ii)

lim sup
j→∞

Fj [x
′
j ] ≥ lim inf

j→∞
Fj [x

′
j ] ≥
xj min. of Fj

lim inf
j→∞

Fj [xj ] ≥
Def.2.1(i)

F [x]  

Remark I: A minimizing sequence (xj)j fulfills limj Fj [xj ] = limj infx∈X Fj [x] which is not necessarily a se-
quence of minimizers (which might not exist!).
Remark II: Note that (i) requires existence of minimizers of Fj and convergence of minimizers, whereas (ii) pro-
vides existance of minimizers without these two conditions.

Applications of Γ-convergence are for instance phase transitions or dimension reductions. In the latter case we
consider the functional (2.6) depending on a small parameter δ > 0 with δ → 0. However, for each δ > 0 the
functional is defined on a different function space, i.e. H1(Ωδ,R

3). Hence one considers the variable transforma-
tion pδ = (ξ, z) ∈ Ωδ 7→ p = (ξ, δ−1z) ∈ Ω1 and the corresponding gradient transformation Dδ = (Dξ,

1
δ∂z),

and defines a rescaled functional by

W∗[φδ,Ω1] = δ

∫
Ω1

W (Dδφδ(p)) dp (2.8)

where p = (ξ, z). Note that stillW∗[φδ,Ω1] =W[φδ,Ωδ].

Depending on the boundary conditions a characteristic scaling of the elastic energy (2.6) resp. (2.8) is observed. If
the boundary conditions induce a stretching of the midplane ω, e.g. by

Ωδ = (−1, 1)2 × (−δ
2
,
δ

2
) , φδ(pδ)

∣∣∣
ξ1=±1

= pδ ± (a, 0, 0) ,

for some a > 0, we observe W∗[φδ,Ω1] ∼ W[φδ,Ωδ] ∼ δ. If we apply compressive boundary conditions, we
have

Ωδ = (−1, 1)2 × (−δ
2
,
δ

2
) , φδ(pδ)

∣∣∣
ξ1=±1

= pδ ∓ (b, 0, 0) , (2.9)

for some b ∈ (0, 1), we observe W∗[φδ,Ω1] ∼ W[φδ,Ωδ] ∼ δ3. In particular, the plate will accommodate the
boundary conditions by bending while keeping its midsurface unstretched. This leads to the investigation of two
different types of models. First, a membrane limit theory is derived by studying the Γ-convergence of the rescaled
functional δ−1W∗[φδ,Ω1] for δ → 0. Second, a bending limit theory is derived by studying the Γ-convergence of
the rescaled functional δ−3W∗[φδ,Ω1] for δ → 0.

Γ-limit for the membrane model. We assume the following growth condition

c1‖F‖2 − c2 ≤W (F ) ≤ c3‖F‖2 + c4 , (2.10)

for real numbers ci ≥ 0 and define rescaled functional

Wδ
mem[φδ,Ωδ] :=

1

δ
W∗[φδ,Ω1] =

∫
Ω1

W (Dδφ(p)) dp .

Theorem 2.2 (Membrane Γ-limit, [LDR95, LDR96]). The sequence (Wδ
mem)δ is uniformly coercive in H1 and

Wδ
mem

Γ→Wmem w.r.t. the weak H1-topology with

Wmem[φ, ω] =

∫
ω

QW2D(Dφ) dξ , φ ∈ H1(ω,R3) ,

where QW2D : R3,2 → R arises from a double relaxation process:

(1) For F ∈ R3,2 define W2D(F ) = minb∈R3 W (F |b)

(2) Computation of quasi-convex envelope, i.e. QW2D(F ) = inf{−
∫
ω
W2D(F +Dφ(x)) dx : φ ∈W 1,∞

0 }
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If W fulfills the growth condition (2.10), then the relaxation of
∫

Ω
W (Dφ) dx is given by

∫
Ω
QW (Dφ) dx (w.r.t.

the weak H1-topology). The relaxation relF of some functional F is given by relF = supG{G lsc. : G ≤ F}.

Some remarks:

• Thm.2.2 holds in W 1,p for p ∈ (1,∞) if (2.10) is replaced by a corresponding p-growth condition.

• A corresponding result holds for a curved reference domain, i.e. ω is replaced by some compact and smooth
surface S ⊂ R3.

• For general elastic densities W the computation of QW2D can be very complex.

The growth conditions (2.10) are fulfilled by typical energy densities representing isotropic materials, e.g. by (2.7).
Furthermore, if the original density W was frame-indifferent, then the limit density is also frame-indifferent and
depends on the metric of the deformed middle surface only [LDR96]. If additionally W (F ) ≥ W (1) for all
F ∈ R3,3, which is always the case in our examples as we assume W (1) = 0 and W ≥ 0, the corresponding
membrane shell energy is constant under compression, i.e. the shell offers no resistance to crumpling [LDR96].

Qualitative properties of membrane limit. For frame-indifferent and isotropic densities the limit membrane
energy can be written as an integral over the midsurface S whose integrand depends on the principal invariants of
the right Cauchy-Green strain tensor C[φ] = DφTDφ only (cf . Sec. 2.1), where φ : S → R3 is a deformation of
the midsurface S to Sφ = φ(S). In detail, the pointwise linear operator C[φ] measures the distortion of tangent
vectors which are mapped from TpS to Tφ(p)Sφ for some arbitrary point p ∈ S, i.e.

gp(C[φ]V,W ) = gφ(p)(DφV,DφW ) , V,W ∈ TpS . (2.11)

If we assume that a local neighborhood of p and φ(p), respectively, are parametrized over the same domain ω ⊂
R2 by immersions x, xφ : ω → R3, we can formally write φ = xφ ◦ x−1 and hence Dφ = Dxφ(Dx)−1.
This concatenation property has been used in [CLR04, LDRS05] to derive a two-dimensional representation of
C[φ] ∈ R3,3 by a distortion tensor G[φ] ∈ R2,2. In detail, since DxT ·Dxg−1 = 12,2 we have

C[φ] = DφTDφ = (Dx)−T gφ(Dx)−1 = Dxg−1gφ(Dx)−1 , (2.12)

with g = DxTDx and gφ = (Dxφ)T (Dxφ) denoting the first fundamental form of the undeformed and deformed
configuration, respectively. Let v ∈ Tξω. If we apply Dxv ∈ TpS to both sides of (2.12) we get

C[φ]Dxv = Dx
(
g−1gφv

)
,

which leads to the pointwise definition
G[φ] = g−1gφ (2.13)

From the considerations above we deduce a membrane shell energy Wmem which is supposed to measure the dis-
similarity in terms of tangential stretching and shearing induced by a deformation φ of the undeformed (reference)
shell S, i.e.

Wmem[S, φ] =

∫
S
Wmem(G[φ]) da . (2.14)

We shall make use of the density defined in (2.3) with d = 2. In particular, we have Wmem(F ) = Wmem(trF,detF )
as well as Wmem(1) = 0 and ∂FWmem(1) = 0.

Γ-limit for the bending model (for plates). We have seen that the elastic energy (2.6) resp. (2.8) scales like δ3

if we apply compressive boundary conditions (2.9). In particular, the plate accommodates the boundary conditions
by bending while keeping its midsurface unstretched. However, as the volume of Sδ scales like δ the integrand
W (Dφδ) approaches zero much faster. That means, since W is assumed to be minimized exactly on SO(3), the
Jacobian Dφδ ∈ R3,3 tends in a certain sense to SO(3). Friesecke, James and Müller [FJM02b] came up with
a rigorous derivation of the thin-plate limit of three-dimensional nonlinear elasticity theory, not just under the
special compressive boundary conditions considered above but under any boundary condition that does not induce
tangential distortion of the midsurface. As for the derivation of the membrane model, the mathematical setting in
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which these results are formulated is that of Γ-convergence. However, due to the scaling mentioned above, for the
derivation of the bending model the limit process of

Wδ
bend[φδ,Ωδ] :=

1

δ3

∫
Ωδ

W (Dφδ) dpδ =
1

δ2

∫
Ω1

W (Dδφδ) dp (2.15)

is considered for δ → 0. Although the approaches are similar, the bending model is more difficult to derive since
the limit functional contains higher derivatives and one is thus dealing with a singular perturbation problem.

Let W : R3,3 → R be a continuous and frame-indifferent energy density fulfilling the growth condition W (F ) ≥
cdist2(F, SO(3)) as well as W (F ) = 0 if F ∈ SO(3). For simplicity, we further assume that W represents an
isotropic material which satisfies the consistency relation

W,FF (1)(G,G) = λ(trG)2 +
µ

2
tr ((G+GT )2) . (2.16)

For example, W describes a St Venant-Kirchhoff material as in (2.7).

Theorem 2.3 (Bending Γ-limit for plates, [FJM02a, FJM02b]). Under the assumptions on W stated above, the
following convergence holds in the H1-topology for δ → 0:

Wδ
bend[φδ,Ωδ]

Γ−→ W0
plate[φ, ω] ,

whereWδ
bend[φδ,Ωδ] as in (2.15) and

W0
plate[φ, ω] =

{
1
24

∫
ω

(
2µ tr (h[φ]2) + λµ

µ+λ/2 (trh[φ])2
)

dξ , on isometries φ : ω → R3

+∞ , otherwise
.

Remark: The limiting energy thus depends on the second fundamental form h[φ] = DnTDφ, where φ can be
thought of being a parametrization of the deformed plate φ(ω), i.e. n ‖ (φ,1 × φ,2). Note that φ : ω → R3 is an
isometry iff. (gφ)ij = φ,i · φ,j = δij , i.e. in particular det gφ = 1.

*Idea of recovery sequence (cf. [Bar15]). For simplicity, we consider a St.Venant-Kirchhoff material (2.7) with
λ = 0 and µ = 1, i.e. W (F ) = 1

4‖F
TF − 1‖2. Furthermore, we consider the representation (2.8), i.e.

Wδ
bend[φδ,Ωδ] = δ

∫
Ω1
W (Dδφδ) dpδ , with Dδ = (Dξ,

1
δ∂z). Let φ : ω → R3 a deformation of the middle

plate that we seek to recover. We assume the sequence of deformations φδ : Ω1 → R3 is of the form

φδ(ξ, z) = φ(ξ) + δzn(ξ) ,

where n is the unit normal to the surface parametrized by φ, i.e. 〈∂kφ(ξ), n(ξ)〉 = 0 for k = 1, 2. This means,
segments normal to ω are mapped to straight lines that are normal to the deformed surface (cf . Kirchhoff-Love
hypothesis). We consider the splitting

Dδφδ = [Dξφ, n] + δz[Dξn, 0] .

Since the second fundamental form h = h[φ] = (Dξφ)TDξn is symmetric and (Dξn)Tn = 0 we get

Dδφ
T
δ Dδφδ =

[
(Dξφ)TDξφ 0

0 |n|2
]

+ δz

[
2Dξφ

TDξn (Dξn)Tn
nTDξn 0

]
+ δ2z2

[
(Dξn)TDξn 0

0 0

]
=

[
g + 2δzh+ δ2z2r 0

0 1

]
where g = g[φ] = (Dξφ)TDξφ is the first fundamental form and r := (Dξn)TDξn. Hence

Wδ
bend[φδ,Ωδ] =

1

δ3
· δ
∫

Ω1

1

4
‖Dδφ

T
δ Dδφδ − 1‖2 dp =

1

4δ2

∫
ω

∫ 1
2

− 1
2

‖(g − 1) + 2δzh+ δ2z2r‖2 dz dξ

=
1

4δ2

∫
ω

∫ 1
2

− 1
2

‖g − 1‖2 + 4δz(g − 1) : h+ 2δ2z2(g − 1) : r + 4δ2z2‖h‖2 + 4δ3z3h : r + δ4z4‖r‖2 dz dξ

=

∫
ω

1

4δ2
‖g − 1‖2 +

1

24
(g − 1) : r +

1

12
‖h‖2 +

δ2

20
‖r‖2 dξ

δ→0−→

{
1
12

∫
ω
‖h‖2 dξ , ‖g − 1‖2 = 0

+∞ , otherwise
,
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which correponds toW0
plate[φ, ω] in Thm.2.3 with λ = 0 and µ = 1.

Γ-limit for the bending model (for shells). More general, the two-dimensional midsurface of the reference
configuration is already curved. Instead of ω ⊂ R2 and Ωδ = ω × (−δ/2, δ/2), respectively, we consider a
smooth and compact surface S ⊂ R3 and

Sδ =

{
x+ z n(x)

∣∣∣x ∈ S, z ∈ (−δ
2
,
δ

2

)}
.

Theorem 2.4 (Bending Γ-limit for shells, [FJMM03]). Under similar assumptions as in Thm.2.3 the scaled energy

Wδ
bend[φδ,Sδ] =

1

δ3

∫
Sδ
W (Dφδ) dpδ

Γ-converges w.r.t the H1-topology to a two-dimensional limit functional given by

W0
shell[φ,S] =

{
1
24

∫
S minv∈R3 Q(Srel

φ (p) + v ⊗ n(p)) da , φ ∈ A
+∞ , otherwise

,

with the quadratic form Q(G) = W,FF (1)(G,G) and the admissible set of isometric deformations

A = {φ ∈W 2,2(S,R3) | (Dtanφ)T (Dtanφ) = 1 a.e. on S} .

Here the tangential derivative Dtanφ ∈ R3,2 can be extended to a proper rotation Q(p) = Q[φ](p) ∈ SO(3) if φ is
isometric. The two-dimensional limit energy density depends on the relative shape operator Srel

φ (p) : TpS → TpS
as it has been defined in Def. 1.9. Note that the limit bending energy W0

shell[φ,S] is only finite for deformations
φ ∈ A, hence we will assume in the remainder of this paragraph that we are dealing with isometric deformations.

Remark: In Sec. 1.3 the relative shape operator has been defined via the pulled-back shape operator, cf . Def. 1.8.
A different (but equivalent) derivation is given by the pointwise definition

Srel
φ (p) = S(p)−Q(p)T Sφ(φ(p))Q(p) , p ∈ S, (2.17)

where S(p) : TpS → TpS and Sφ(q) : TqSφ → TqSφ are the shape operators on the undeformed and deformed
configuration, respectively. Here we have used the notation Sφ = φ(S) and q = φ(p) for p ∈ S. The relative
shape operator is supposed to measure the (pointwise) difference between the shape operators on S and Sφ, re-
spectively. However, as these operators live on different tangent spaces, i.e. rotated planes in R3, we must include
proper rotations to ensure well-definedness of the pointwise difference. Hence Q(p) and Q(p)T denote the linear
mappings between the two different tangent spaces, as illustrated in the following diagram:

TpS TpS

Tφ(p)φ(S) Tφ(p)φ(S)

Q(p)

S(p)

Sφ(φ(p))

Q(p)T

We have Q(p) = Dφ(p) ∈ SO(3) and Dφ(p)n(p) = nφ(φ(p)), where nφ denotes the normal on the deformed
surface. To this end, we can think of QT (Sφ ◦ φ)Q as being a pulled-back representation S∗φ of the shape opera-
tor Sφ on the deformed configuration. The linear operator S∗φ : TpS → TpS is then implicitly defined as in Def. 1.8.

As for the membrane shell energy we use the analytic results presented above to extract a generic bending shell
energy by setting

Wbend[S, φ] =

∫
S
Wbend(S

rel
φ ) da . (2.18)

In general, we make use of the density

Wbend(A) = α(trA)2 + (1− α) ‖A‖2F , α ∈ {0, 1} . (2.19)
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In particular, for α = 1 we recover an adapted form of the Willmore energy measuring differences in mean
curvature. Recall that the matrix representation of the relative shape operator in the parameter domain was defined
in (1.6)

srel
ξ [φ] = sξ − s∗ξ [φ] = g−1

ξ (hξ − h̃ξ) .

It is not difficult to verify that for α = 0 we get

Wbend[S, φ] =

∫
S
‖Srel

φ ‖2F da =

∫
ω

tr
(
srel
ξ [φ]2

)√
det g dξ , (2.20)

and for α = 1 we get

Wbend[S, φ] =

∫
S

(
trSrel

φ

)2

da =

∫
ω

(
tr srel

ξ [φ]
)2√

det g dξ . (2.21)

*Sketch of proof [Hee16]: In the following we drop the specification of the point p ∈ S in the notation. We have

‖Srel
φ ‖2F = ‖S − S∗φ‖2F =

2∑
i,j=1

[
〈ei, Sej〉R3 − 〈ei, S∗φej〉R3

]2
,

trSrel
φ = tr (S − S∗φ) =

2∑
i=1

[
〈ei, Sei〉R3 − 〈ei, S∗φei〉R3

]
,

where (e1, e2, e3) is the canonical basis of R3. Let us assume that a neighboorhoud of p ∈ S is parametrized
by some chart x : ω ⊂ R2 → R3. For ξ ∈ ω such that p = x(ξ) we have another basis (v1, v2, n) with
[v1|v2] = Dx(ξ) and n = n(p) with

ei = a1iv1 + a2iv2 + a3in , ai :=

a1i

a2i

a3i

 = [v1|v2|n]−1ei =: Aei ,

where A ∈ R3,3 represents the change of basis. Hence using the linearity of S we can write

〈ei, Sej〉 = 〈a1iv1 + a2iv2 + a3in, a1jSv1 + a2jSv2 + a3jSn〉 =

2∑
k,l=1

akialjg(vk, Svl) =

2∑
k,l=1

akialjhkl .

An analogous computation for 〈ei, S∗φej〉 and the identity (AAT )i,j≤2 = g−1 yield the result. �

Full elastic model and dissimilarity measure. Given a surface S ⊂ R3 representing a physical shell with
thickness δ > 0 and a deformation φ : S → R3, a generic elastic deformation energy is given by∫

S
δWmem(G[φ]) + δ3Wbend(S

rel
φ ) da , (2.22)

with Wmem(A) = Wmem(trA,detA) as defined in (2.3) for d = 2 and Wbend as defined in (2.19). Nevertheless, for
convenience we shall consider in the following a rescaled version of (2.22), namely

WS [φ] =

∫
S
Wmem(G[φ]) + ηWbend(S

rel
φ ) da , (2.23)

where the bending weight η represents the squared thickness of the shell. Note that (2.23) is invariant with respect
to rigid body motions by construction, i.e.WS [φ] = 0 and dWS [φ] = 0 if φ(x) = Qx + b with Q ∈ SO(3) and
b ∈ R3. In particular, we have

WS [id] = 0, dWS [id] = 0. (2.24)

Similar tp (2.5), we can derive a dissimilarity measure for two given shells SA,SB ⊂ R3 by minimizing (2.23)
over all deformations satisfying φ(SA) = SB , i.e.

d2
shell(SA,SB) = min

φ:φ(SA)=SB

∫
S
Wmem(G[φ]) + ηWbend(S

rel
φ ) da . (2.25)
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However, we do not discuss whether this definition is actually well-defined, i.e. if there exists such a minimizer.
Physically, one might regard the second shell SB as a deformed version of the first shell SA, i.e., the correspond-
ing material of SB is just in a deformed configuration compared to its configuration in SA. Since every material
point has a well-defined position, one can view this correspondence as a priori information. In this setup, one
can then assume the dissimilarity measure to be well-defined. However, we will see in the next section that the
well-posedness of the corresponding discrete dissimilarity measure is trivial by construction of the discrete shell
space.

Remark: Note the relation between the dissimilarity measure (2.25) and Thm. 1.7: d2
shell(SA,SB) = 0 iff. SA and

SB are congruent, i.e. they differ only by a rigid body motion.

2.3 Discrete shells and discrete deformation energies
According to Def. 1.13, a discrete surface is a triangular meshMh = (V,F) along with an injective embedding
E : V → R3, such thatMh is a discrete 2-manifold which is orientable. In particular, a discrete surface is uniquely
determined by its geometry and connectivity. We assume thatMh is a polyhedral approximation of the midsurface
S of a thin elastic shell. Hence we will denote a discrete surface S :=Mh that has also this physical interpretation
as a discrete shell - however, these terms are interchangeable.

In the following we consider (discrete) deformations between different discrete surfaces (resp. discrete shells).
Alternatively, we assume a designated discrete reference surface to be given which prescribes the connectiv-
ity/topology encoded in the sets V and F . Then different discrete shells are given by different embeddings of
the topologically identical mesh.

Definition 2.5 (Dense correspondence and discrete deformation). We say that two discrete surfaces (resp. discrete
shells) are in dense correspondence or in 1-to-1-correspondence if they share the same connectivity/topology.
Given two discrete surfaces S and S̃ with embeddings E : V → R3 and Ẽ : V → R3, respectively, which are in
dense correspondence. A discrete deformation Φ : S → S̃ is the unique piecewise affine mapping defined by its
nodal values Φ(E(vi)) := Ẽ(vi) for i = 1, . . . , |V|.

That means, ifX = (1−ξ1−ξ2)Xi+ξ1Xj +ξ2Xk ∈ T (f), where T (f) = {Xi, Xj , Xk} ⊂ S and ξ1, ξ2 ∈ [0, 1]

barycentric coordinates, we have Φ(X) = (1− ξ1 − ξ2)X̃i + ξ1X̃j + ξ2X̃k with T̃ (f) = {X̃i, X̃j , X̃k} ⊂ S̃.

Remark: The (pairwise) dense correspondence will guarantee the well-definedness of a dissimilarity measure on
the space of discrete surfaces (cf . eq. (2.25)).

In the following we will consider families of discrete surfaces which are pairwise in dense correspondence. Actu-
ally, dense correspondence defines an equivalence relation, i.e. we consider a fixed equivalence class. This means,
all discrete surfaces are based on the same sets of indices V and F , respectively. Nevertheless, for two discrete
surfaces S and S̃ we will often denote the corresponding sets by V,F and Ṽ, F̃ , respectively. This convention
simp[lifies the notation, e.g. af refers to the area of face f in S, whereas af̃ := ãf denotes the area of face f in S̃.
Here we have to keep in mind that for fi ∈ F and f̃i ∈ F̃ we actually have fi = f̃i but T (fi) 6= T̃ (f̃i), since S
and S̃ have different embeddings.

Discrete membrane model. Let S and S̃ two discrete surfaces resp. discrete shells that are in dense correspon-
dence. We have elementwise constant first fundamental forms and a unique correspondence between all faces.
Furthermore, we want to make use of the membrane model derived in Sec. 2.2 and in particular of the represen-
tation of the distortion tensor (2.13). Hence to describe membrane distortions induced by a discrete deformation
Φ : S→ S̃ we arrive at an elementwise constant, discrete distortion tensor

G[Φ]|f = (Gf )−1GΦ
f ∈ R2,2 , f ∈ F . (2.26)

Here and in the following all quantities with either a tilde or a super index Φ are living on the deformed surface
S̃ = Φ(S), e.g. if Gf ∈ R2,2 is the discrete first fundamental form on the face f ∈ F in the undeformed configu-
ration S, then G̃f = GΦ

f ∈ R2,2 is the corresponding form on the deformed configuration S̃ = Φ(S).
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Using the continuous membrane model in Sec. 2.2 and in particular the generic membrane energy in (2.14) we
define the discrete membrane energy by

Wmem[S, S̃] =

∫
S

Wmem(G[Φ]) da =
∑
f∈F

af ·Wmem(G[Φ]|f ) , S̃ = Φ(S) . (2.27)

Note that a one point quadrature is sufficient as we are dealing with an elementwise constant discrete distortion
tensor. Different from (2.14), the discrete membrane energy directly depends on the undeformed and deformed
discrete shell. For the membrane energy density Wmem we can use exactly the same density as in (2.14), i.e.

Wmem(G[Φ]|f ) =
µ

2
trG[Φ]|f +

λ

4
detG[Φ]|f −

(
µ

2
+
λ

4

)
log detG[Φ]|f − µ−

λ

4
.

Note that trG[Φ]|f controls the local change of length, i.e. the change of edge lengths, whereas detG[Φ]|f controls
the local change of volume, i.e. the change of triangle volumes. In particular, the density grows quadratically
for detG[Φ]|f → ∞ but due to the log-term it grows even faster for detG[Φ]|f → 0. This prevents a local
interpenetration of matter, i.e. the degeneration of triangles. Finally, we have Wmem(1) = 0 and dWmem(1) = 0.

Discrete bending model. Having a notion of a discrete shape operator given by (1.23) at hand, we can translate
the general representation of a bending energy given in (2.18) (with the density (2.19) and α ∈ {0, 1}) directly
into the discrete setup. Setting α = 0, as in (2.20), we can define a discrete bending energy via

Wbend[S, S̃] =
∑
f∈F

af · tr
(

(Sf − SΦ
f )2
)
, S̃ = Φ(S) , (2.28)

with af = |T (f)| as above. Alternatively, by choosing α = 1, as in (2.21), we can derive a discrete version of the
Willmore energy:

W̃bend[S, S̃] =
∑
f∈F

af ·
(

tr (Sf − SΦ
f )
)2

, S̃ = Φ(S) . (2.29)

Note that a one point quadrature is again sufficient as we are integrating over an elementwise constant density.

A simplified discrete bending model. In the remainder of this section we investigate another definition of a
discrete Willmore energy and derive a representation that corresponds to a non-conforming FEM approach. Fur-
thermore, after some simplifications, we obtain the Discrete Shells bending model [GHDS03] as a special case.

In (1.24), we have computed a triangle-averaged mean curvature, i.e.

trSf = tr (G−1
f Hf ) = −

2∑
i=0

cos θi2
af
‖Ei‖ .

Now the discrete mean curvature functional can be written as a sum over edges:∫
S

trS da =
∑
f∈F

af · trSf =
∑
f∈F

2∑
i=0

− cos
θi
2
‖Ei‖ =

∑
e∈E
−2 cos

θe
2
le ,

with le being the length of edge e ∈ E . We introduce an area de = 1
3 (af + af ′) if e is an edge of the two adjacent

faces f and f ′, cf . Fig. 3. Then we rewrite the discrete mean curvature functional by introducing a mean curvature
density at edges: ∫

S

trS da =
∑
e∈E

de ·

(
−2 cos θe2

de
le

)
. (2.30)

Now we further simplify (2.30) to derive the Discrete Shells bending model proposed in [GHDS03]. A Taylor
expansion of the function f(θ) = −2 cos θ2 about θ = π yields f(θ) = (θ−π)+O(|θ−π|3). Let S be a reference
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shell, i.e. the undeformed configuration. If we assume that we have an isometric3 deformation Φ : S → R3, i.e.
lΦe = le and dΦ

e = de, we obtain up to higher order terms∫
S

tr (S − SΦ ◦ Φ) da =
∑
e∈E

de

(
θe − θΦ

e

de
le

)
.

Here θΦ
e = θ̃e is the dihedral angle at edge e in the deformed mesh S̃ = Φ(S). In the spirit of [MDSB02], one

arrives at the Discrete Shells bending model by squaring the discrete density, i.e.

WDS
bend[S, S̃] =

∑
e∈E

(θe − θ̃e)2

de
l2e , S̃ = Φ(S) . (2.31)

Intuitively, WDS
bend can be considered as a simplification of (2.29). Although (2.31) coincides exactly with the

Discrete Shells bending energy introduced in [GHDS03], the authors in [GHDS03] derive their discrete bending
energy by using results from [CSM03].

θe

e

Figure 3: Support of the Discrete Shells bending energy [GHDS03]; the dihedral angle θe = αe − π at an edge e
is defined as the angle between adjacent triangle normals, where αe is the angle between the two faces. The darker
region represents the area de associated with e.

A discrete dissimilarity measure. Finally, we are able to define a dissimilarity measure on the space of discrete
surfaces and discrete shells, respectively, given by a discrete deformation energy:

Definition 2.6 (Discrete dissimilarity measure). Given two discrete surfaces S = (N ,F , E) and S̃ = (Ñ , F̃ , Ẽ)
that are in dense correspondence, i.e. there is a unique affine deformation Φ with S̃ = Φ(S). The discrete defor-
mation energy W = WS[Φ] = W[S, S̃] is defined by

W[S, S̃] = Wmem[S, S̃] + ηWbend[S, S̃] ,

where the bending weight η = δ2 represents the squared thickness of the shell. The discrete membrane energy and
the discrete bending energy, respectively, are given by

Wmem[S, S̃] =
∑
f∈F

af ·Wmem(G[Φ]|f ) ,

Wbend[S, S̃] =
∑
f∈F

af ·Wbend(Sf − SΦ
f ) ,

where G[Φ] ∈ R2,2 denotes the discrete distortion tensor defined in (2.26) and S ∈ R2,2 the matrix representation
of the discrete shape operator defined in (1.23). The membrane density Wmem and the bending density Wbend,

3When deriving (discrete) bending models, one typically assumes to deal with inextensible materials which are characterized by mostly
isometric deformations, cf . e.g. [GHDS03, BWH+06]. This corresponds to the analytic results presented in Sec. 2.2, where bending modes are
of higher order and hence only decisive when the present deformation is (almost) isometric.

27



respectively, are defined as

Wmem(A) =
µ

2
trA+

λ

4
detA−

(
µ+

λ

2

)
log detA− µ− λ

4
,

Wbend(A) = α(trA)2 + (1− α) tr (A2) , α ∈ {0, 1} .

For α = 1, a simplification leads to the Discrete Shells bending energy [GHDS03], i.e.

WDS
bend[S, S̃] =

∑
e∈E

(θe − θ̃e)2

de
l2e .
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3 The shape space of discrete surfaces
It is due to Kendall [Ken84] that complex shapes, e.g. curves, images or solid materials, are considered as individ-
ual elements or points in a high or even infinite dimensional space, i.e. the shape space. Initially, this space is just
a collection of shapes without any mathematical structure. In particular, most shape spaces cannot be considered
as linear vector spaces. Nevertheless, one is interested in performing mathematical operations on the set of shapes,
for instance, for two given shapes one wants to compute a connecting path (cf . Fig. 4). The notion of an optimal
or shortest path then induces naturally a distance measure which allows e.g. for a statistical analysis. It is a well-
established ansatz to consider a given shape space as a Riemannian manifold. In a nutshell, a Riemannian manifold
can be described as a collection of points that is locally equivalent to the Euclidean space, together with a so-called
Riemannian metric, i.e. an instruction how to measure local variations. On a Riemannian manifold the notion of a
connecting path and hence a (locally) shortest path, a so-called geodesic, is intrinsically given. Thereby, a geodesic
connecting two points can be considered as the solution of the interpolation problem. Similarly, one can extrapo-
late by extending geodesic paths via the exponential map or transport details via the parallel transport—both are
inherent concepts in Riemannian manifold theory. Hence the mathematical structure of a Riemannian manifold
leads to the solution of a couple of problems relevant e.g. in computer graphics.

Figure 4: Morphing by means of interpolation (orange) computed between two input shapes (gray), cf .
[HRWW12].

In this section we shall consider the shape space of discrete surfaces as a Riemannian manifold. We aim at com-
bining a physically sound model of thin shells (as it has been derived in Sec. 2) with a consistent definition of
geometric objects in a Riemannian manifold. The key ingredient, as we will see, is the computation of (locally)
shortest paths in the manifold, i.e. geodesic curves. Hence the collection of geometric objects and corresponding
operators in the Riemannian framework is also referred to as geodesic calculus.

Continuous geodesics are minimizers of the so-called path energy. One way to approximate geodesic paths con-
necting two points in a generic manifold is via the minimization of a discretized path energy. Instead of discretizing
the underlying flow, the variational time-discretization proposed by Rumpf and Wirth [WBRS11] is based on the
direct minimization of this discrete path energy subject to the prescribed data given at the initial and the end
time. In particular, this approach is built on a local approximation of the squared Riemannian distance, where this
approximation can be thought of as a dissimilarity measure between shapes. Hence, we shall use the (discrete)
dissimilarity measure derived in the previous section to apply the variational time-discretization to the space of
discrete shells in order to compute (time-discrete) geodesics.
Building on the variational time-discretization of geodesic paths, Rumpf and Wirth [RW13] developed a compre-
hensive discrete geodesic calculus on the space of viscous fluidic objects and presented in [RW15] a corresponding
complete convergence analysis on general finite- and on certain infinite-dimensional shape spaces with the struc-
ture of a Banach manifold. The generic definitions of several discrete geometric objects, such as exponential map,
logarithm and parallel transport, are appropiate to be transferred directly to other shape spaces. To this end, we
apply exactly this discrete geodesic calculus to the space of discrete shells to obtain useful and robust tools for
applications in computer graphics such as extrapolation or detail transfer.
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3.1 Geodesic calculus on a Riemannian manifold
Geodesics are usually defined as curves that transport their velocity vector parallely or equivalently, that are solu-
tions of the geodesic equation. Both definitions are based on the notion of a covariant derivative along a curve.
However, we first define geodesics as minimizers of the path energy. Later, we will see that this is well-defined as
these minimizers indeed satisfy the geodesic equation.

References: The essential results discussed in this section have been presented by Martin Rumpf and Benedikt
Wirth in [RW15]. All concepts based on finite dimensional Riemannian geometry are presented according to the
well-established textbook by M. doCarmo [dC92]; for further reading on infinite dimensional manifolds we refer
to the textbook by S. Lang [Lan95].

We define a differentiable manifold M of dimension d < ∞ in the sense of Definition 2.1 in [dC92, chap. 0],
i.e. there is a family of injective mappings xα : ωα ⊂ Rd → M with ∪αxα(ωα) = M, such that x−1

β ◦ xα is
differentiable for any pair α, β with xα(ωα)∩xβ(ωβ) 6= ∅. For convenience, we will assume in the following that
there is one global parametrization x : ω ⊂ Rd → M with x(ω) = M. In particular, x is twice differentiable,
injective and regular in the sense that Dx has full rank. The tangent space TpM ofM at p ∈M is defined as

TpM = {γ̇(0) | γ : (−ε, ε)→M is a smooth curve with γ(0) = p, ε > 0} .

If x : ω → M is a parametrization with x(ξ) = p for some ξ = (ξ1, . . . , ξd) ∈ ω, the set (X1, . . . , Xd) with
Xi = Xi(p) = Xi(ξ) = x,i(ξ) = ∂x

∂ξi
(ξ) is a basis of TpM, denoted as canonical basis. A vector field V onM

is a mapping with V (p) ∈ TpM for all p ∈M.

A Riemannian metric onM is a mapping g : p 7→ gp such that gp : TpM× TpM→ R is a bilinear, symmetric
and positive-definite form, which varies smoothly in the sense that ξ 7→ gij(ξ) := gx(ξ)(Xi(ξ), Xj(ξ)) is a dif-
ferentiable function in ω. A manifold equipped with a Riemannian metric is referred to as Riemannian manifold.
As (gij)ij is a regular matrix in Rd,d there is an inverse matrix g−1 ∈ Rd,d which is denoted by (gkl)kl, i.e.
gijg

jk = δik.

Remark: To avoid confusion, we denote the metric associated with generic Riemannian manifolds by Riemannian
metric and the metric on a two-dimensional embedded surface by first fundamental form, cf . Sec. 1.2.

Path energy and geodesics. Given a smooth path (y(t))t∈[0,1] on a Riemannian manifold (M, g), the length of
this path is defined as

L[(y(t))t∈[0,1]] =

∫ 1

0

√
gy(t)(ẏ(t), ẏ(t)) dt . (3.1)

Note that the path length is independent of reparameterization. This geometrically nice property leads to analytical
complications when dealing with the existence theory of shortest paths as well as to computational difficulties
when optimizing this non-convex functional. The path energy is defined as

E [(y(t))t∈[0,1]] =

∫ 1

0

gy(t)(ẏ(t), ẏ(t)) dt . (3.2)

In contrast to L, the path energy is not independent of reparameterization. A direct application of the Cauchy-
Schwarz inequality shows that

L[(y(t))t∈[0,1]] ≤
√
E [(y(t))t∈[0,1]]

and equality holds if and only if gy(t)(ẏ(t), ẏ(t)) = const. We will see that minimizers of E will have this
constant speed property. Thus, to identify shortest paths for fixed boundary data y(0) = yA and y(1) = yB with
yA, yB ∈M we will seek for minimizers of the path energy and minimizers will be paths with constant speed.

Definition 3.1 (Geodesic path). For yA, yB ∈ M a minimizer of the path energy among all path y : [0, 1] →M
with y(0) = yA and y(1) = yB is denoted as geodesic path connecting yA and yB .

Rumpf and Wirth have shown in [RW15] that this variational definition is indeed well-defined, i.e. a minimizer of
E exists and is unique under suitable assumptions. In particular, their results holds for general, possibly infinite
dimensional manifolds. We will discuss these results in the following.
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Existence and uniqueness of geodesic paths. In this paragraph we present the theoretical existence and unique-
ness results by Rumpf and Wirth [RW15]. In particular, the Riemannian manifoldM does not necessarily be finite
dimensional. To this end, we need a precise technical setup. Let V be a separable, reflexive Banach space that is
compactly embedded4 in a Banach space Y. LetM be the closure of an open connected subset of V and hence
a Banach manifold, potentially with boundary (in which case we assume the boundary ∂M to be smooth). We
assume M to be path-connected. For some reference point ŷ ∈ Y we might think of M as being some affine
space attached to ŷ, i.e.M = ŷ + V. In particular, the tangent bundle ofM is associated with V, i.e. TyM = V
for all y ∈M. Let g : Y×Y×Y → R be a Riemannian metric with gy(v, v) =∞ if v /∈ V, which satisfies the
following hypotheses:

(H1)


g is uniformly bounded and V-coercive in the sense c∗‖v‖2V ≤ gy(v, v) ≤ C∗‖v‖2V .

g is continuous in the sense |gy(v, v)− gỹ(v, v)| ≤ β(‖y − ỹ‖Y)‖v‖2V
for a strictly increasing, continuous function β with β(0) = 0.

Hypothesis (H1) is globally fulfilled only for quite special Riemannian manifolds. However, the setup is also ad-
equate to analyze general, possibly infinite-dimensional manifolds locally, where the linear space V or its subset
M have to be interpreted as a chart of the considered manifold.

For yA, yB ∈ M, the next theorem states the existence of a connecting path with least energy. The key point in
the proof is the weak lower semi-continuity of the continuous path energy (3.2) using the compact embedding of
V into Y.

Theorem 3.2 (Existence of continuous geodesics, [RW15]). Let (M, g) be a Riemannian manifold satisfying as-
sumption (H1). Then the energy (3.2) is lower semi-continuous with respect to weak convergence inH1((0, 1);M).
Furthermore, for yA, yB ∈ M there exists a geodesic connecting yA and yB , i.e. a minimizer of E in the space of
all paths (y(t))t∈[0,1] ∈ H1((0, 1);M) with y(0) = yA and y(1) = yB . In particular, y is Hölder continuous (in
the V-topology).

Proof: see Thm 4.1 in [RW15]. �

As in finite-dimensional Riemannian geometry the shortest geodesic between close points is unique as stated in
the next theorem (cf . also Cor. 5.2 in [Lan95, VIII]).

Theorem 3.3 (Uniqueness of short continuous geodesics, [RW15]). Under the assumptions of Theorem 3.2, for
the metric g being C2(M;V′ ⊗V′)-smooth, geodesics are unique locally. That means, given yA ∈ M there is
some small δ > 0 depending on yA such that for each yB ∈ M with ‖yA − yB‖V < δ the shortest geodesic
between yA and yB is unique.

Proof: see Thm 4.2 in [RW15]. �

Once we have existence and uniqueness of geodesics, we can define a Riemannian distance of two points yA, yB ∈
M in the usual way, i.e.

dist(yA, yB) = min
y(0)=yA,y(1)=yB

L[(y(t))t∈[0,1]] =
√

min
y(0)=yA,y(1)=yB

E [(y(t))t∈[0,1]] . (3.3)

One can verify the axioms of a metric and show that the induced topology is equivalent to the V-topology, i.e.√
c∗‖yB − yA‖V ≤ dist(yA, yB) ≤

√
C∗‖yB − yA‖V.

Covariant derivative. Next, we will investigate the differentiation of vector fields on manifolds, which will lead
us to the notion of the covariant derivative. Finally, we will explore a connection to the Euler-Lagrange equations
of geodesic paths. Here we will focus on the covariant derivative of a vector field along a curve y : [0, 1] →M.
In practice, most important is the vector field given by the curve’s velocity field v(t) := ẏ(t) ∈ Ty(t)M, t ∈ [0, 1].
However, v̇(t) = ÿ(t) is not a tangent vector in general. The covariant derivative D

dt resolves this ”problem” since
D
dtv(t) ∈ Ty(t)M again.

4That means, id : V → Y is a bounded and compact operator, i.e. ‖v‖Y ≤ c‖v‖V for some c > 0 and all v ∈ V and each bounded
subsequence in ‖.‖V has a converging subsequence wrt. ‖.‖Y .
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We first consider a finite dimensional Riemannian manifoldM with a parametrization x : Ω ⊂ Rd → M. This
allows us to work with coordinates, that means, we can express all quantities in a finite dimensional basis of the
tangent space. However, to transfer the following concepts to the infinite dimensional setup, we eventually aim at
deriving a coordinate-free representation.

The second derivatives x,ij = ∂ξi∂ξjx of the parametrization x : Ω ⊂ Rd → M decomposes into a normal
component and into a tangential component, i.e. we obtain

x,ij =

d∑
k=1

ΓkijXk +
∑
l

βlnl ,

where Γkij are the Christoffel symbols and (nl)l is a basis of the normal space (TpM)⊥. It follows that

x,ij ·Xk =

d∑
l=1

ΓlijXl ·Xk =

d∑
l=1

Γlijglk . (3.4)

From the symmetry of second derivative of the parametrization we immediately obtain the symmetry of the
Christoffel symbols, i.e. Γkij = Γkji.

Proposition 3.4. Let g−1 = (gij)ij=1,...,d be the inverse of g. Then we obtain the following representation of the
Christoffel symbols:

Γkij =
1

2

d∑
l=1

glk (gjl,i − gij,l + gli,j) . (3.5)

Proof: Differentiation of the metric and taking into account (3.4) gives

gjl,i = x,ji · x,l + x,j · x,li =

d∑
m=1

Γmjigml +

d∑
m=1

Γmli gmj ,

gij,l = x,il · x,j + x,i · x,jl =

d∑
m=1

Γmil gmj +

d∑
m=1

Γmjlgmi ,

gli,j = x,lj · x,i + x,l · x,ij =

d∑
m=1

Γmlj gmi +

d∑
m=1

Γmij gml .

Summing the first and the third equation and substracting the second equation we obtain

gjl,i − gij,l + gli,j = 2

d∑
m=1

Γmij gml ,

which after multiplication with g−1 (i.e. applying
∑
l g
lk(. . .) on both sides) verifies the claimed representation. �

To obtain a coordinate-free formulation, we define a bilinear operator Γ = Γp : TpM× TpM→ TpM by

Γ(Xi, Xj) =

d∑
k=1

ΓkijXk ,

and get for tangent vectors U =
∑
i uiXi, V =

∑
j vjXj and W =

∑
l wlXl:

gp(Γ(U, V ),W ) =

d∑
i,j,k,l=1

ui vj wl Γ
l
ijgkl .

On the other hand, testing the right-hand side of (3.5) with U, V,W in the metric yields

gp(Γ(U, V ),W ) =
1

2

(
(Dpg) (V )(U,W ) + (Dpg) (U)(V,W )− (Dpg) (W )(U, V )

)
.
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Definition 3.5 (Christoffel operator). For p ∈ M the Christoffel operator Γ = Γp is a mapping Γp : TpM×
TpM→ TpM. For U, V ∈ TpM the evaluation Γp(U, V ) is defined implicitly by

gp(Γp(U, V ),W ) =
1

2

(
(Dpg) (V )(U,W ) + (Dpg) (U)(V,W )− (Dpg) (W )(U, V )

)
∀W ∈ TpM .

Remark: Existence of such an operator is shown in Thm. 4.2 of [Lan95, VIII].

Let I ⊂ R be a compact interval, e.g. I = [0, 1], and y : I → M be a curve and W a vector field along the
curve, i.e. W (t) =

∑d
l=1 wl(t)Xl(y(t)). Let Ẇ (t) :=

∑d
l=1 ẇl(t)Xl(y(t)) and let V (t) = ẏ(t) with V (t) =∑

l vl(t)Xl(y(t)), which is also a vector field along y. The product rule implies

d

dt
W (t) =

d∑
l=1

(
ẇl(t)Xl(y(t)) + wl(t)

d∑
k=1

x,lk(y(t))vk(t)

)
.

The covariant derivative D
dtW (t) of W along y is defined as the projection of d

dtW (t) onto the tangent space.
Hence we replace x,lk by its tangential part, i.e.

∑d
m=1 ΓmlkXm = Γy(t)(Xl, Xk), which leads to the following

definition which is also coordinate-free:

Definition 3.6 (Covariant derivative). Let y : I → M be a curve and W : I → TM a vector field along y. If
ẏ(t) =

∑
l vl(t)Xl(y(t)), we define the covariant derivative D

dtW of W along y for t ∈ I by

D

dt
W (t) =

d∑
l=1

(
ẇl(t)Xl(y(t)) + wl(t)

d∑
k=1

Γy(t)(Xl, Xk)vk(t)

)
= Ẇ (t) + Γy(t)(W (t), ẏ(t)) . (3.6)

Remark: Due to its coordinate-free formulation, Def. 3.6 is also valid for infinite dimensional manifolds (cf .
[Lan95]). Since the following concepts are based on this definition they are not restricted to finite dimensional
manifolds, either.

As mentioned before, a curve y : I →M is usually defined to be geodesic if it solves the geodesic equation, i.e.

D

dt
ẏ(t) = 0 ∀t ∈ I .

The next theorem states that geodesics as defined in Def. 3.1 are solutions of the geodesic equation:

Theorem 3.7. If y : [0, 1]→M is a geodesic connecting y(0) and y(1), then D
dt ẏ(t) = 0 for all t ∈ (0, 1).

Proof. Consider the Euler–Lagrange equation of the path energy and apply integration by parts to obtain

0 = ∂yE [y](ϑ) =

∫ 1

0

(Dygy)(ϑ)(ẏ, ẏ) + 2gy(ẏ, ϑ̇) dt

=

∫ 1

0

(Dygy)(ϑ)(ẏ, ẏ)− 2(Dygy)(ẏ)(ẏ, ϑ)− 2gy(ÿ, ϑ) dt

for all smooth test vector fields ϑ along the path y. By the fundamental lemma we achieve

0 = gy(ÿ, ϑ) + (Dygy)(ẏ)(ẏ, ϑ)− 1

2
(Dygy)(ϑ)(ẏ, ẏ) = gy(ÿ + Γ(ẏ, ẏ), ϑ) = gy(

D

dt
ẏ, ϑ) . �

In particular, minimizers y of the path energy satisfy a constant speed property, i.e. gy(t)(ẏ(t), ẏ(t)) = const.
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3.2 Variational time-discretization of geodesics
In a sequence of papers, Rumpf and Wirth [Wir09, WBRS09, RW13, RW15] have introduced a time-discrete anal-
ogon of the continuous geodesic calculus presented in the previous section. The resulting time-discrete geodesic
calculus has already been applied to several Riemannian manifolds or shape spaces, e.g. in [HRWW12, HRS+14,
BER15, MRSS15, Per15]. In this section, we provide a survey of the time-discrete geodesic calculus proposed by
Rumpf and Wirth and present () important convergence results. As before, we start with a variational formulation
of discrete geodesics, defined via minimizers of a discrete path energy5.
In the continuous setting the starting point of a geometric calculus on a Riemannian manifold is usually the def-
inition of a Riemannian metric. However, as we will see, the discrete geodesic calculus is solely based on the
notion of a (squared) Riemannian distance resp. a local approximation thereof. Obviously, a Riemannian distance
is induced by the metric (cf . eq. (3.3)). On the other hand, given the Riemannian distance dist, one can recover the
Riemannian metric gp at some point p ∈M by

gp(V,W ) =
1

2
∂2

2 dist2(p, p)(V,W ) , V,W ∈ TpM . (3.7)

For many applications, e.g. when dealing with physical shape spaces, it is difficult to define a Riemannian metric a
priori. On the other hand, it is often much easier to come up with the notion of a distance, e.g. by using a physically
sound dissimilarity measure (cf . Sec. 2). To account for this circumstance as well as for the fact that Riemannian
distances are in practice hard to compute (as they require solving an optimization problem), the discrete geodesic
calculus is actually based on an approximation of the squared Riemannian distance which is easy to evaluate and
consistent with the metric by definition due to (3.7).

Variational time-discretization. In the following, we denote an ordered set of points Y K = (y0, . . . , yK) in the
manifoldM as a time-discrete K-path. Often we interpret this discrete path as a uniform sampling of a smooth
curve y : [0, 1] → M, i.e. we have yk = y(tk) with tk = kτ for k = 0, . . . ,K where τ = K−1 and K ∈ N
denotes the sample size. Instead of using a straightforward time-discretization of the continuous path energy (3.2)
we first consider the following estimates

L[(y(t))t∈[0,1]] ≥
K∑
k=1

dist(yk−1, yk) , E [(y(t))t∈[0,1]] ≥
1

τ

K∑
k=1

dist2(yk−1, yk) , (3.8)

where equality holds for geodesic paths due to the constant speed property. The first estimate is straightforward,
and the second estimate follows with the Cauchy-Schwarz inequality, i.e.

K∑
k=1

dist2(yk−1, yk) ≤
K∑
k=1

(∫ kτ

(k−1)τ

√
gy(t)(ẏ(t), ẏ(t)) dt

)2

≤
K∑
k=1

τ

∫ kτ

(k−1)τ

gy(t)(ẏ(t), ẏ(t)) dt ,

since the expression on the right hand side is exactly τ E [(y(t))t∈[0,1]].

The estimate on the path energy in (3.8) suggest that the sum on the right hand side might be a reasonable ap-
proximation of E . However, as already mentioned in the beginning, the squared Riemannian distance dist2 is
often difficult to compute in practice. Therefore we assume there is a functionalW : M×M → R which is a
local approximation of the squared Riemannian distance dist2. In detail, it is supposed that W is weakly lower
semi-continuous in both arguments and that it satisfies the following hypotheses:

(H2)


There exist ε, C > 0 such that for all y, ỹ ∈M:
dist(y, ỹ) ≤ ε ⇒ |W[y, ỹ]− dist2(y, ỹ)| ≤ Cdist3(y, ỹ)

W is coercive in the senseW[y, ỹ] ≥ y(dist(y, ỹ))
for a strictly increasing, continuous function y with y(0) = 0 and limd→∞ y(d) =∞.

The first property says there is a C > 0, such that |W[y, ỹ] − dist2(y, ỹ) | ≤ Cdist3(y, ỹ). Note that W is
not required to be symmetric. For g smooth enough, a valid approximation of dist2 is e.g. given by W[y, ỹ] =
1
2gy(ỹ − y, ỹ − y). In general, the following theorem states that gy = 1

2W,22[y, y] implies (H2) for smooth g and
W:

5We will often omit the prefix ”time” when referring to a time-discrete object.
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Theorem 3.8 (Consistency conditions, [RW15]). Unter hypothesis (H1), if W is twice Gâteaux - differentiable
onM×M with bounded second Gâteaux derivative, thenW[y, ỹ] = dist2(y, ỹ) + O(dist3(y, ỹ)) for ỹ close to
y ∈ M̊ implies

W[y, y] = 0 , W,2[y, y](V ) = 0 , W,22[y, y](V,W ) = 2gy(V,W )

for any V,W ∈ V. Furthermore,W,1[y, y](V ) = 0 and

W,11[y, y](V,W ) = −W,12[y, y](V,W ) = −W,21[y, y](V,W ) =W,22[y, y](V,W ) .

IfW is even three times Fréchet-differentiable, the implication becomes an equivalence.

*The proof of Thm. 3.8 can also be found in [RW15, Lemma 4.6].

We arrive at the following definition of a discrete path energy and a discrete path length (see [RW15]):

Definition 3.9 (Discrete length and energy). For a discrete K-path Y K = (y0, . . . , yK) with yk ∈ M for k =
0, . . . ,K we define the discrete length LK and the discrete energy EK by

LK [Y K ] =

K∑
k=1

√
W[yk−1, yk] , EK [Y K ] = K

K∑
k=1

W[yk−1, yk] . (3.9)

Then a discrete geodesic (of order K) is defined as a minimizer of EK [Y K ] for fixed end points y0, yK .

Existence and uniqueness of discrete geodesics. Next we prove the existence and uniqueness of discrete
geodesics as presented in [RW15]. The proofs follow the same ideas as the corresponding continuous theorems
presented in the previous subsection.

Theorem 3.10 (Existence of discrete geodesics, [RW15]). Given yA, yB ∈ M, there is a discrete geodesic path
(y0, . . . , yK) which minimizes the discrete energy EK over all discrete paths (ỹ0, . . . , ỹK) with ỹ0 = yA and
ỹK = yB .

Proof: see Thm 4.3 in [RW15]. �

Theorem 3.11 (Uniqueness of discrete geodesics, [RW15]). Let (H1) and (H2) hold and assume W to be twice
Fréchet-differentiable onM×M. For all yA ∈ M̊ and K ∈ N there exists ε > 0 such that there exists a unique
discrete geodesic (y0, . . . , yK) with y0 = yA and yK = yB for all yB with ‖yA − yB‖V < ε.

Proof: see Thm 4.7 in [RW15]. �

*Properties of discrete path energy and discrete geodesics. We state further properties from [RW15]:

Theorem [Convergence of path energy, [RW15]]. Under hypothesis (H2) there exists δ > 0 such that dist(yA, yB) <√
Kδ implies ∣∣∣ min

(y0,...,yK)
y0=yA,yK=yB

EK [(y0, . . . , yK)]− dist2(yA, yB)
∣∣∣ =≤ C ′

K
dist3(yA, yB) .

Theorem [Equidistribution of points along discrete geodesics, [RW15]]. Under hypothesis (H2) there exists δ > 0
such that if dist(yA, yB) <

√
Kδ, then discrete geodesics satisfy dist(yk−1, yk) ≤ Cτ for all k = 1, . . . ,K with

the constant C > 0 only depending on dist(yA, yB).
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Convergence. In this paragraph we prove convergence of the discrete path energy to the continuous path energy
in the sense of Γ-convergence (as defined in Def.2.1). As a direct consequence this implies the convergence of
discrete geodesics to continuous ones. However, the discrete path energy EK is defined on a finite sequence of
points in (M)K , whereas the continuous path energy E is defined on continuous paths (y(t))t∈[0,1] onM. To this
end, we extend the definition of the discrete path energy to continuous paths onM which are composed of shortest
geodesic segments.

For the remainder of this subsection we set tk = k/K and yk = y(tk) for a given path y : [0, 1] → M and
k = 0, . . . ,K. We define

AK :=

{
y ∈ L2 ((0, 1),M) : y

∣∣∣
[tk−1,tk]

is shortest geodesic segment
}
.

That means, if y ∈ AK , then y is piecewise geodesic interpolation of the points y0, . . . , yK . Now we define an
energy ÊK : L2((0, 1);Y)→ R via

ÊK [y] :=

{
EK [(y0, . . . , yK)] , if y ∈ AK

∞ , else

Theorem 3.12 (Γ-convergence of the discrete energy, [RW15]). Assuming (H1) and (H2), ÊK converges to E for
K →∞ in the sense of Γ-convergence wrt. the L2((0, 1);Y)-topology.

Proof : See proof of [RW15, Thm. 4.8]. �

Now let (y0, . . . , yK) be a discrete geodesic, i.e. a minimizer of EK . Let yK be the piecewise geodesic interpola-
tion of y0, . . . , yK . From the proof of the previous theorem we know E [yK ] ≤ Ē <∞. The the proof of Thm. 3.2
implies that there is a subsequence of (yK)K , still denoted by (yK)K , that with yK → y in C0([0, 1],Y). Due to
the properties of Γ-convergence discussed in Sec. 2.2 we get (compare to [RW15, Corollary 4.9]):

Corollary 3.13 (Convergence of discrete geodesics). Minimizers of the discrete path energy EK , which are piece-
wise geodesically interpolated, converge to minimizers of the continuous path energy E in C0([0, 1],Y).

Remark (i): Taking into account the equivalence of the V topology and the manifold topology, a similar argument
can be given for the piecewise linear interpolation yKlin of discrete geodesics instead of piecewise geodesic inter-
polations so that the above convergence obviously also holds for yKlin.

Remark (ii): Rumpf and Wirth [RW15] obtain even stronger convergence estimates under additional smoothness
hypotheses (in addition to (H1) and (H2)). In detail, they prove that the convergence in C0([0, 1];Y) ensured by
Thm. 3.12 is actually much stronger with velocities converging in L2((0, 1);V).

Remark (iii): Note that discrete minimizers of the discrete path length LK are in general unrelated to continuous
geodesics. Let us consider the caseM = R2\Br, whereBr = {x : |x| < r}, andW[y, ỹ] = ‖y−ỹ‖2, as depicted
in Fig. 5. Then a discrete path (y0, . . . , yK) connecting yA = (−αr, 0) and yB = (αr, 0), α > 1, that minimizes
the time-discrete path energy tend to distribute uniformly along the connecting curve. If r � dist(yA, yB)/K
this is not realizable along a straight line connecting yA and yB , cf . Fig. 5. However, the distribution of points
representing a discrete minimizer of LK is arbitrary, since moving points along the connecting line does not alter
the length.

Figure 5: In general, minimizers of the discrete path length do not converge to continuous geodesics.
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3.3 Riemannian splines
For two points p1, p2 ∈ M a smooth interpolation y : [0, 1] → M with y(0) = p1 and y(1) = p2 is given by
the connecting geodesic path. However, for a sequence 0 = t1 < t2 < . . . < tJ = 1 and corresponding points
p1, . . . , pJ ∈M, there is in general no geodesic curve y : [0, 1]→M that fulfills the interpolation constraints

y(tj) = pj , j = 1, . . . , J . (3.10)

In particular, a curve y satisfying (3.10) does in general not comply with the geodesic equation D
dt ẏ = 0. For

example, a piecewise geodesic curve connecting p1, . . . , pJ fulfills D
dt ẏ = 0 on each segment (tj , tj+1), j =

1, . . . , J − 1, but exhibits discontinuities in ẏ at the interpolation points. Nevertheless, if one is interested in a
curve that on the one hand satisfies the interpolation constraints exactly and on the other hand is as smooth as
possible, one might consider the geodesic equation as a penalty term. This motivation leads to the functional

F [(y(t))t∈[0,1]] =

∫ 1

0

gy(t)

(
D

dt
ẏ(t),

D

dt
ẏ(t)

)
dt , (3.11)

where D
dt denotes the covariant derivative along y as defined by Def. 3.6. The generaliuzed multiple interpolation

task is then given by

Compute y ∈ arg min
y:[0,1]→M

F [y] subject to (3.10) .

In the finite dimensional Euclidean setting, i.e. M = Rd and gp denotes the standard Euclidean product, the
covariant derivative of ẏ is simply given by the second time derivative ÿ, i.e. we have

FEuc[(y(t))t∈[0,1]] =

∫ 1

0

‖ÿ(t)‖2 dt . (3.12)

Consider a discretization of the unit interval I = [0, 1] with nodes Ih = {0 = z0<z2< . . . < zN = 1}. A spline
function of degree k on Ih is a function s ∈ Ck−1(I,Rd) such that s is a polynomial of degree ≤ k on each
interval [zn−1, zn], n = 1, . . . , N . The following theorem is often refered to as Schoenberg’s theorem although it
has been proved first by de Boor6:

Theorem [de Boor, 1963]. For 0 = t1 < t2 < . . . < tJ = 1 and p1, . . . , pJ ∈ Rd there is a unique minimizer
y ∈ C2([0, 1],Rd) of FEuc that satisfies the interpolation constraints y(tj) = pj for j = 1, . . . , J as well as one
of the boundary conditions

ÿ(0) = ÿ(1) = 0 , (natural b.c.)

ẏ(0) = v0, ẏ(1) = v1 for given v0, v1 ∈ Rd , or (Hermite b.c.)
y(0) = y(1), ẏ(0) = ẏ(1), ÿ(0) = ÿ(1) . (periodic b.c.)

The minimizer is given by the unique cubic spline, i.e. a spline of degree 3, satisfying the interpolation constraints
and boundary conditions.

As (3.11) can be seen as a generalization of (3.12) to Riemannian manifolds, we refer to F as spline energy and
we denote minimizers of F as Riemannian (cubic) splines. The boundary condition then read as follows:

D

dt
ẏ(0) =

D

dt
ẏ(1) = 0 , (natural b.c.)

ẏ(0) = v0, ẏ(1) = v1 for given v0 ∈ Ty(0)M , v1 ∈ Ty(1)M , or (Hermite b.c.) (3.13)

y(0) = y(1), ẏ(0) = ẏ(1),
D

dt
ẏ(0) =

D

dt
ẏ(1) . (periodic b.c.)

Although the above theorem states the existence of interpolating splines in the Euclidean space, this is not true for
general manifolds (cf. [HRW17, Lemma 2.15]):

6Actually, Schoenberg cites de Boor’s paper [dB63] when referring to this result in [Sch64b]. F or further reading on this we refer to
[Sch73, Sch64a], a simple proof is given e.g. in [DH02, 7.4].
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Lemma 3.14 (Nonexistence of Riemannian splines, [HRW17]). LetM be any manifold with a closed geodesic
curve C and a point ȳ1 ∈ C such that any locally geodesic curve connecting ȳ1 with itself lies inside C. Then,
minimizers of F under the interpolation contraints (3.10) do not exist in general.

Proof: It suffices to provide a counterexample. ConsiderM to be a cylinder in R3 of infinite length and perimeter
1. Let t1 = 0, t2 = r ∈ (0, 1) \Q, t3 = 1, and choose an arbitrary point p1 = p3 ∈ M. Let p2 ∈ M be the point
opposite p1. Now define ξ : R→M to be a 1-periodic arclength-parameterization of the circle through p1, p2, p3

with ξ(0) = p1. In particular we have ξ(N) = p1 and ξ(N + 1/2) = p2. For arbitrary m,n ∈ N consider the
Euclidean cubic spline x : [0, 1] → R with x(t1) = x1 = 0, x(t2) = x2 = m + 1

2 , and x(t3) = x3 = n.
Obviously, y = ξ ◦ x is a curve onM satisfying (3.10). Furthermore, its spline energy can be computed explicitly
as

F [y] =

∫ 1

0

|ÿ(t)|2 dt =

∫ 1

0

|ẍ(t)|2 dt =
3((x2 − x1)(t3 − t1)− (x3 − x1)(t2 − t1))2

(t3 − t2)2(t3 − t1)(t2 − t1)2
=

3(m+ 1
2 − rn)2

(1− r)2r2
,

where we used ÿ(t) = d
dt (ξ̇(x(t)) · ẋ(t)) = 0 · ẋ(t) + 1 · ẍ(t). By Dirichlet’s approximation theorem there exist

m,n ∈ Z that make the above arbitrarily small, hence we have inf F [y] = 0.
However, there is no curve y with F [y] = 0. Indeed, such a curve would satisfy D

dt ẏ = 0, which on the cylinder
results in a regular helix with constant speed. Since y(0) = y(1), the helix is degenerate and winds round the circle
at constant speed so that necessarily y(t) = ξ(mt) for some m ∈ Z. However, the preimage of p2 under y does
not contain r so that (3.10) is violated, r /∈ y−1(p2) = { 1

2m ,
3

2m , . . . ,
2m−1

2m }. �

Remark: This construction can easily be transferred onto a general manifold with a closed geodesic, where the
circle is replaced by the closed geodesic and the interpolation conditions are chosen correspondingly. Indeed, the
infimum of the spline energy on an analogous sequence of curves, now mapping onto the closed geodesic, van-
ishes. Hence, any minimizer, if it exists, must be a (local) geodesic characterized by D

dt ẏ = 0 and fulfilling the
interpolation conditions. The above argument shows that this is impossible.

The counterexample above relies on the fact that F only penalizes variations in the velocity and not the velocity
itself. In particular, it is zero whenever the velocity is constant and it is not sensitive to the total length of the
curve. To account for this circumstence we will instead consider F + σE for some σ > 0. Now the total length of
the curve is penalized as well and a construction as in Lemma 3.14 can no longer be energetically advantageous.
However, in order to obtain existence we have to specify an admissible Riemannian manifold first. Let V be a
separable Hilbertspace (which is reflexive), Y a Banach space, such that V compactly embeds into Y, and set
M := V. Next, we have to define an admissible metric:

Definition 3.15 (Admissible metric). A Riemannian metric g :
⋃
y∈M ({y} × TyM× TyM) → R onM shall

be called admissible if it can be extended to a function g : Y ×V ×V→ R of the form

gy(v, w) = gcy(v, w) +Q(v, w) (3.14)

for some compact part gc, which depends on the position y, and a quadratic partQ, where the following hypotheses
shall be satisfied for all v ∈ V.

(i) gc is symmetric in the last two arguments and gcy(v, v) ≤ C∗‖v‖2Y for some constant C∗.

(ii) gc is twice differentiable with bounded derivatives as a function gc : Y → Y′ ⊗Y′.

(iii) Q is symmetric positive semi-definite and bilinear on V ×V with Q(v, v) ≤ C∗∗‖v‖2V for some constant
C∗∗ .

(iv) g is uniformly coercive with respect to the V norm, i.e. c∗‖v‖2V ≤ gy(v, v) for some c∗ > 0.

Here, V′ and Y′ denote the dual spaces to V and Y, and V′ ⊗V′ and Y′ ⊗Y′ are equipped with the topology
induced by the injective cross norm.

Remark I: As a direct consequence of (ii) there exists a strictly increasing continuous function β with β(0) = 0
such that

|gcy(v, v)− gcỹ(v, v)| ≤ β(‖y − ỹ‖Y)‖v‖2Y for all y, ỹ ∈ Y and all v ∈ V.
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Remark II: Property (i) is stronger than the corresponding assumption in (H1), i.e. gy(v, v) ≤ C∗‖v‖2V, since
‖.‖Y ≤ C ‖.‖V due to the bounded embedding. This ‖.‖V-boundedness is, however, admissible for the quadratic
part Q, which does not depend on the position y ∈M on the other hand.

Remark III: The decomposition of g into gc andQ will be necessary to establish weak continuity of the associated
Christoffel operator (see Lemma 3.16), which is required for an existence result of Riemannian splines. For a
general gy , which is uniformly bounded and positive definite on V × V for all y ∈ Y but nonlinear in y, the
right-hand side of

2gy(Γy(v, w), z) = (Dygy) (w)(v, z)− (Dygy) (z)(v, w) + (Dygy) (v)(w, z) (3.15)

will in general not be weakly continuous jointly in v and w on infinite-dimensional spaces V.

Before, we are able to prove existence of minimizers of F+σE with σ > 0, we have to establish a weak continuity
result for the Christoffel operator, which will imply weak lower semi-continuity of the (augmented) spline energy.

Lemma 3.16 (Weak continuity of the Christoffel operator, [HRW17]). On an admissible Riemannian manifold
(M, g) the Christoffel operator is weakly continuous in the sense

Γyk(vk, wk)→ Γy(v, w) in V as k →∞

for yk → y strongly in Y and (vk, wk) ⇀ (v, w) weakly in V ×V. In more detail,

‖Γyk(vk, wk)− Γy(v, w)‖V
≤ C (‖wk‖Y‖vk − v‖Y + ‖wk − w‖Y‖v‖Y + ‖yk − y‖Y‖w‖V‖v‖V + ‖yk − y‖Y‖Γyk(vk, wk)‖Y) (3.16)

for some constant C > 0 only depending on c∗ and the derivative bounds on gc from Definition 3.15(ii).

Proof: See [HRW17, Lemma 2.17]. �

Next, we prove the lower semi-continuity property of F in the weak H2-topology:

Lemma 3.17 (Continuity properties of spline energy, [HRW17]). For (M, g) admissible, the spline energy F is
lower semi-continuous wrt. the weak H2((0, 1);V)-topology.

Proof: See [HRW17, Lemma 2.18]. �

Now we can finally prove the existence of interpolating splines as minimizers of the augmented/regularized func-
tional F + σE :

Theorem 3.18 (Existence of spline interpolations, [HRW17]). For σ > 0 and (M, g) admissible there exists a
minimizer y of Fσ[y] := F [y] + σE [y] subject to (3.10) under natural, Hermite, or periodic boundary conditions
in the Sobolev space H2((0, 1);V).

Sketch of proof: 1) First, we show that the regularized spline energy Fσ with condition (3.10) is coercive in
H2 = H2((0, 1);V). Indeed, let F [y] + σE [y] < M for some M ∈ R, then ‖ẏ‖2L2 ≤ E[y]

c∗ ≤
M
σc∗ , and by (3.10)

and Poincaré’s inequality it follows that ‖y‖2H1 ≤ C(M). Furthermore, using the reverse triangle inequality and
Young’s inequality we have (abbreviating Γ = Γy(ẏ, ẏ))

M
c∗ ≥

1
c∗F [y] ≥

∫ 1

0

‖D
dt
ẏ‖2V dt ≥

∫ 1

0

‖ÿ‖2V − 2‖ÿ‖V‖Γ‖V + ‖Γ‖2V dt

≥
∫ 1

0

1
2‖ÿ‖

2
V − ‖Γ‖2V dt ≥ 1

2‖ÿ‖
2
L2 −

(
3
2
‖Dygc‖
c∗

)2

‖ẏ‖4L4 ,

where in the last inequality we used the estimate ‖Γy(ẏ, ẏ)‖V ≤ 3
2
‖Dygc‖
c∗ ‖ẏ‖2Y (cf. (3.15)). From this one can

deduce that ‖ÿ‖L2 is bounded by a constant depending solely on M , which is proved by contradiction (by means
of a decreasing rearrangement, for details we refer to [HRW17, Thm. 2.19]).
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2) As a consequence of the coercivity, a minimizing sequence (yk)k=1,... is uniformly bounded in H2, and by
the reflexivity of the space H2 we obtain a weakly converging subsequence, again denoted by (yk)k=1,..., which
converges to some y in H2. Finally, the weak lower semi-continuity of F by Lemma 3.17 and E by Thm. 3.2
implies

Fσ[y] ≤ lim inf
k→∞

Fσ[yk] .

Furthermore, the weak limit y satisfies (3.10) and the boundary conditions since they are continuous with respect
to weak convergence in H2((0, 1);V). Thus, y is the sought spline interpolation. �

Remark: One can also prove that y is in C2, 12 ([δ, 1− δ];V) for every δ ∈ (0, 1
2 ), cf. [HRW17, Thm. 2.19].

3.4 Variational time-discretization of Riemannian splines
In this section, we derive a consistent time-discretization of the spline energy (3.11) that fits into the framework of
time-discrete geodesic calculus presented in Sec. 3.2.
As a motivation we start taking a look at the Euclidean setup, i.e. M = Rd with the standard Euclidean scalar
product gp =< ., . > and W[y, ỹ] = ‖y − ỹ‖2. We consider a curve y : [0, 1] → M and for some stepsize
τ = K−1 a uniform sampling yk = y(tk) with tk = kτ for k = 0, . . . ,K. Then we have

EEuc[y] =

∫ 1

0

‖ẏ(t)‖2 dt ≈
K∑
k=1

∥∥∥∥ẏ( tk−1 + tk
2

)∥∥∥∥2

≈
K∑
k=1

τ

∥∥∥∥yk−1 − yk
τ

∥∥∥∥2

= K

K∑
k=1

W[yk−1, yk] .

Now the covariant derivative of ẏ is simply the second time derivative ÿ. Approximating the integrand of the
Euclidean spline energy

∫
‖ÿ‖2 dt by a second order finite difference quotient yields

‖ÿ(tk)‖2 ≈
∥∥∥∥2 yk − yk−1 − yk+1

τ2

∥∥∥∥2

= 4τ−4

∥∥∥∥yk − yk−1 + yk+1

2

∥∥∥∥2

.

Using this approximation as well as natural bounday conditions ÿ(0) = ÿ(1) = 0 we arrive at

FEuc[y] =

∫ 1

0

‖ÿ(t)‖2 dt ≈
K−1∑
k=1

τ ‖ÿ(tk)‖2 ≈ 4τ−3
K−1∑
k=1

∥∥∥∥yk − yk−1 + yk+1

2

∥∥∥∥2

= 4K3
K∑
k=1

W[yk, ỹk] ,

with ỹk = 1
2 (yk−1 + yk+1). The key insight is to interprete the local average ỹk as the midpoint of a geodesic in

the Euclidean space connecting yk−1 and yk+1, where a geodesic is given by the straight connecting line, i.e.

ỹk = arg min
y

(W[yk−1, y] +W[y, yk+1]) .

Replacing the squared Euclidean distance by a general approximation functionalW , and the local average ỹk by
the midpoint of a short geodesic connecting yk−1 and yk+1, one obtains

Definition 3.19 (Discrete spline energy). For K ∈ N let Y K = (y0, . . . , yK) be a discrete K-path in M. We
define the discrete spline energy by

FK [Y K ] = 4K3
K−1∑
k=1

W[yk, ỹk] , (3.17)

subject to the constraint that (yk−1, ỹk, yk+1) is a discrete geodesic for k = 1, . . . ,K − 1, i.e.

ỹk = arg min
y∈M

(
W[yk−1, y] +W[y, yk+1]

)
, for k = 1, . . . ,K − 1 . (3.18)

Note that the natural boundary conditions have been incorporated implicitly since the summation in (3.17) goes
from k = 1 to k = K−1 assuming that there is no contribution at the boundary. However, corresponding Hermite
or periodic boundary conditions can be chosen as well. Furthermore, we can also pose discrete interpolation
constraints. Let 0=k1<k2< . . . <kI =K be an index set (I ≥ 2) and let p1, . . . , pI ∈ M be given. We say that
Y K is a discrete spline interpolating yk1 , . . . , ykI if it minimizes (3.17) subject to

yki = pi , i = 1, . . . , I . (3.19)
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If I = 2, i.e. we only fix y0 and yK , the discrete spline is precisely the discrete geodesic connecting y0 and yK .

Remark: As in the contiuous case, existing of minimizers of FK subject to (3.19) and appropiate boundary condi-
tions, can only be shown for the augmented/regularized discrete functional

FK [y] + σ EK [y] , σ > 0 .

Additionally we need a splitting of the approximative functional W that represents the splitting of the metric as
defined in Def. 3.15, i.e. W[y, ỹ] = Wc[y, ỹ] + Q(ỹ − y, ỹ − y). Indeed, without this assumption on the func-
tionalW one cannot expect the discrete regularized spline energy to possess minimizers in general. In fact, if one
considers a minimizing sequence

(
(yj0, . . . , y

j
K)
)
j=1,...

inMK+1, the coercivity ofW only leads to weak conver-

gence in VK+1 for a subsequence. However, weak convergence of yjk−1 and yjk+1 as j →∞ does not necessarily
imply weak convergence of their geodesic midpoint for general functionalsW obeying only the hypothesis posed
in [RW15]. Thus,W[yjk, ỹ

j
k] may not be lower semi-continous as j →∞, preventing the existence of a minimizer.

Indeed, 4K4W[yjk, ỹ
j
k] is the discrete counterpart of gy(Ddt ẏ,

D
dt ẏ), and thus the lack of weak continuity of the for-

mer in the time discrete context is linked to the lack of weak continuity of the latter in the time continuous context.
However, we will see that in practive one can actually choose σ = 0.

3.5 Application to the space of discrete surfaces
Remark: In this section we discuss practical results and numerical approximation techniques presented in [HRWW12]
(for discrete geodesics) and [HRS+16] (for discrete splines). For details we refer to these papers.

In the following we will consider families of discrete surfaces which are pairwise in dense correspondence (cf .
Def. 2.5). Actually, dense correspondence defines an equivalence relation, i.e. we consider a fixed equivalence
class. This means, all discrete surfaces are based on the same sets of indices V and F , respectively.

Definition 3.20 (Shape space of discrete surfaces). Given some representative discrete reference surface S, the
shape space of discrete surfaces M[S] is given by the equivalence class of S where the equivalence relation is
given by dense correspondence (as defined in Def. 2.5).

Remark: In the following we assume that we are dealing with an arbitrary but fixed equivalence classM =M[S].

There are two important implications of Def.3.20:

1. The definition of a dissimilarity measure onM is well-defined, since for two given discrete surfaces S, S̃
having the same connectivity, a piecewise affine deformation Φ : S→ S̃ is uniquely determined.

2. The discrete spaceM can be identified with R3n, where n is the number of nodes.

Combining Def. 2.6 and Def. 3.9 yields the notion of discrete geodesics in the space of discrete surfaces, analo-
gously, combining Def. 2.6 and Def. 3.19 yields the notion of discrete splines in that space.

Spotlight on computational effort. The variational formulation of the discrete geodesics leads to the following
necessary optimality conditions:

0 = ∂SkEK [S0, . . . ,SK ] , k = 1, . . . ,K − 1 ,

⇐⇒ 0 = ∂2W[Sk−1,Sk] + ∂1W[Sk,Sk+1] , k = 1, . . . ,K − 1 , (3.20)

where ∂iW refers to the variation with respect to the ith argument of W. Note that for a functional F = F [X] we
make use of the notation

0 = ∂XF [X] :⇔ 0 =
d

dt
(F [X + tV ])

∣∣∣
t=0
∀V ∈ X ,

where the test directions V live in a suitable test space X , which is simply X = R3n if we consider variations of
discrete shell energies. To compute discrete geodesics we have to solve the system of nonlinear equations (3.20)
simultaneously, where we fix the two end shapes S0 and SK . Hence we are dealing with a nonlinear optimization
problem in R3n(K−1). Similarly, the Euler-Lagrange equations of a discrete spline also result in a nonlinear
optimization problem in R3n(K+1−I) along with K − 1 nonlinear conditions in R3n to solve for the geodesic
midpoints in (3.18).
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Efficient approximation. For a discrete shell S ∈ R3N let N , E and F denote the set of vertices, edges and
triangles, respectively. Let L[S] = (le[S])e ∈ R|E| be the vector of edge lengths. If e = t1 ∩ t2 is the common
edge of triangles t1 and t2 we associate to e the area measure de = 1

3 (at1 + at2). The dihedral angle θe of e is
defined as the angle between the face normals of t1 and t2. Finally, let Θ[S] = (θe[S])e ∈ R|E| denote the vector
of dihedral angles. Now we aim at defining a novel discrete dissimilarity measure in the space of discrete shells
that is supposed to an approximation of the one defined in Def. 2.6. To this end, we consider the Discrete Shells
energy introduced in [GHDS03]. This energy consists of the simplified bending energy (2.31) plus a simplification
of a membrane energy. In detail, the simplified membrane energy measures deviations in edge lenghts and triangle
volume quadratically. However, we will focus on the length term here. To this end we define for two discrete shells
S and S̃ the simplified discrete dissimilarity measure via

Wqu[S, S̃] = Wqu
mem[S, S̃] + ηWqu

bend[S, S̃] (3.21)

with bending weight η > 0 and

Wqu
mem[S, S̃] =

∑
e∈E

de[S]

l2e [S]

(
le[S]− le[S̃]

)2

, Wqu
bend[S, S̃] =

∑
e∈E

l2e [S]

de[S]

(
θe[S]− θe[S̃]

)2

.

In order to remedy the problem of high computational cost, we introduce a change of variables in order to turn
the nonlinear optimization problem into a linear one. We heavily build on the two-step approximation scheme
proposed in [FB11] for this change of coordinates. Indeed, for a discrete shell S ∈ R3N we consider the vectors
of edge lengths L = L[S] and dihedral angles Θ = Θ[S] as primary degrees of freedom. The key observation
is that with these degrees of freedom, the energy in (3.21) become quadratic provided that the purple colored
terms are not part of the optimization. To achieve this, we replace the purple colored terms in (3.21) by quantities
computed on a reference mesh Ŝ. Collecting the new primary variables in one variable Z = (L,Θ) living in the
LΘ configuration space L := R|E|×R|E| = R2m, we get an approximation of (3.21) via

ŴLΘ[Z, Z̃] = ŴL[L, L̃] + η ŴΘ[Θ, Θ̃] =
∑
e∈E

α̂e

(
le − l̃e

)2

+ η
∑
e∈E

β̂e

(
θe − θ̃e

)2

(3.22)

where α̂e = de[Ŝ]/l2e [Ŝ] and β̂e = l2e [Ŝ]/de[Ŝ] for all e ∈ E and a reference mesh Ŝ. Note that the .̂ indicates that
the functional is now quadratic but dependent on the reference meshes. We refer to this as the LΘ-energy.

Optimization in LΘ-space. The problem of computing a discrete geodesic and a discrete spline, respectively,
can now be re-formulated as follows. For instance, we construct a discrete spline curve in the LΘ-space defined as
a minimizer of

F̂KLΘ[Z0, . . . ,ZK ] = 4K3
K∑
k=1

ŴLΘ(Zk, Z̃k) , (3.23)

where (Zk−1, Z̃k,Zk+1) is a geodesic in the LΘ-space, i.e.,

Z̃k = arg min
Z∈L

(
ŴLΘ[Zk−1,Z] + ŴLΘ[Z,Zk+1]

)
.

Since ŴLΘ is quadratic, one obtains the explicit solution Z̃k = 1
2 (Zk−1 +Zk+1). This can be inserted into (3.23)

so that we end up with an unconstrained optimization problem. Hence a minimizer of F̂KLΘ is a (weighted) cubic
spline in the linear space L = R2m.

Notice that there is no spatial coupling between any two different edge lengths in a minimizer (Z0, . . . ,ZK) of
(3.23), i.e., an edge length lke of the kth pose interacts only with lengths lje of the same edge e and poses j 6= k. The
same applies for dihedral angles. As a consequence, the Euler-Lagrange equation for F̂KLΘ splits into numerous
independent (K + 1)-dimensional linear systems, i.e., one for each edge length and dihedral angle, which can be
solved efficiently and in parallel. Moreover, the matrices representing these linear systems are all given by

1 −2 1
−2 3 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

. . .

 ∈ RK+1,K+1,
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which coincides (for interior quantities) to the 2nd order finite difference approximation of 4th derivatives.
Computing discrete geodesics works analogously, here one obtains a discrete geodesic (Z0, . . . ,ZK) in L for fixed
endpoints Z0 and ZK in terms of intermediate points given by Zk = ((K − k)Z0 + kZK)/K, k = 1, . . . ,K − 1.

Mesh reconstruction. Intermediate values for edge lengths and dihedral angles are generally not realizable as
a triangle mesh. Indeed, for closed meshes we have m ≈ 3n and hence the map that associates a set of edge
lengths and dihedral angles to a given mesh cannot be surjective. To this end, we consider a reconstruction in a
least squares sense, similar to [FB11]. For given optimal values Zk = (Lk,Θk) we define Sk as the minimizer of
the nonlinear mapping

S 7→ ŴLΘ(Z[S],Zk) , (3.24)

where ŴLΘ is defined as in (3.22). We find the minimizer via the Gauss–Newton method (see Section 6 in [FB11]
for details, the ”target” values are given by Zk).
The reconstruction can be seen as a projection of the point Z ∈ R|E|×R|E| onto the submanifold which is given by
all sets of edge lengths and dihedral angles that are actually realizable as an embedded triangle mesh. Necessary
conditions for points to lie in this submanifold are given by the Gauss-Codazzi equations, see, e.g., [WLT12] for
a discrete version. Computationally, the reconstruction is the hardest part in the LΘ-space approximation method.
Fortunately it can be parallelized since the reconstruction of one mesh does not depend on the reconstruction of
any othere mesh.

Remark: For the discrete splines, optimal Z-variables obtained as solutions of linear systems may have negative
lengths. This happens rarely in practice and is most easily addressed by setting corresponding edge weights α̂e in
(3.22) to zero.

3.6 Variational time-discretization of geodesic calculus
Let y : I → M be a curve and W : I → TM a vector field along y. In Def. 3.6 we defined the covariant
derivative D

dtW of W along y for t ∈ I by

D

dt
W (t) = Ẇ (t) + Γy(t)(W (t), ẏ(t)) .

With a notion of a covariant derivative along a curve we can define a parallel transport, which is indeed well-
defined due to Thm. 3.3/3.4 in [Lan95, VIII]:

Proposition 3.21 (Parallel transport). Let y : I →M be a curve. A vector field V : I → TM along y is called
parallel if DdtV (t) = 0 for all t ∈ I . For t0 ∈ I , V0 ∈ Ty(t0)M, there is a unique parallel vector field V : I → TM
with V (t0) = V0. Furthermore, the map Py(t0)→y(t) : Ty(t0)M → Ty(t)M, Py(t0)→y(t)V0 = V (t) is a linear
isomorphism.

For a given vector V0 ∈ Ty(t0)M one can solve D
dtV (t) = 0 with V (t0) = V0 as an ordinary differential equation

to perform the (unique) parallel transport of V0 along the path.

Remark: As mentioned before, a curve y : I → M is usually defined to be geodesic if it solves the geodesic
equation, i.e.

D

dt
ẏ(t) = 0 ∀t ∈ I .

This means, that y transports its own velocity vector parallely.

Finally, we define the exponential map for a general manifold:

Definition 3.22 (Exponential map). Let y(t) = y(t, p, V ) : I → M, 0 ∈ I , be the solution of D
dt ẏ(t) = 0

for initial data y(0) = p and ẏ(0) = V . The (geometric) exponential map expp : TpM → M is defined as
expp(V ) = y(1, p, V ).
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To see that this definition is well-defined we refer to Prop. 4.2 in [Lan95, IV]. Obviously, we have the scaling
property y(t, p, V ) = expp(tV ), which implies that y(1, p, V ) is well-defined if ‖V ‖ is sufficiently small. From the
local uniqueness of short geodesic paths we deduce that there exists δ > 0, such that expp : Bδ(0)→ expp(Bδ(0))
is a bijection. In this case, we define Up = expp(Bδ(0)) to be the normal neighbourhood of p. Hence the notion
of an inverse mapping is locally well-defined:

Definition 3.23 (Logarithm). The inverse operator of the exponential map is called the (geometric) logarithm
logp : Up → TpM, where Up denotes the normal neighbourhood of p.

Now we introduce a time-discretization of these geometric objects. Let p, q ∈ M such that there is a unique
geodesic y : [0, 1] →M with y(0) = p and y(1) = q. Then, by Def. 3.23, the logarithm of q with respect to p is
the initial velocity ẏ(0) ∈ TpM, i.e. logp(q) = ẏ(0). The initial velocity ẏ(0) can be approximated by a difference
quotient in time,

ẏ(0) =
y(τ)− y(0)

τ
+O(τ) .

Thus, we obtain
τ logp(q) = y(τ)− y(0) +O(τ2) .

This gives rise to a consistent definition of a time-discrete logarithm (see [RW15]):

Definition 3.24 (Discrete logarithm). Suppose the discrete geodesic (y0, . . . , yK) is the unique minimizer of the
discrete path energy (3.9) with y0 = p and yK = q. Then we define the discrete logarithm ( 1

KLOG)
p
(q) = y1−y0.

Note that 1
K is part of the symbol and not a factor.

We consider the difference y1−y0 as a tangent vector at p = y0. In the special caseK = 1 we have ( 1
1LOG)

p
(q) =

q−p. As in the continuous case, the discrete logarithm can be considered as a representation of the nonlinear vari-
ation q of p in the (linear) tangent space of displacements7 on p.

Next we consider the discretization of the exponential map. In the continuous setting, the exponential map expp
maps tangent vectors V ∈ TpM onto the end point y(1) of the unique geodesic (y(t))t∈[0,1] with y(0) = p and
ẏ(0) = V . That means, we have expp(V ) = y(1) and, via a simple scaling argument, expp (tkV ) = y(tk), for
k = 0, . . . ,K, where tk = kτ and τ = K−1. In he following we translate this into the discrete setup. Let us again
consider a discrete geodesic (y0, . . . , yK) with y0 = p and yK = q. Now V = ( 1

KLOG)
p
(q) = y1 − y0 is the

discrete logarithm in the tangent space TpM, we aim at defining a discrete power k exponential map EXPkp such
that

EXPkp(V ) = EXPp(kV ) = yk .

This notation is motivated by the observation that exp(ks) = expk(s) on R or more general matrix groups.
Furthermore, we would like to have the following recursive property, which holds in the continuous setup:

y(tk) = expp(kV ) = expy(tk−2)(2Vk−1) , Vk−1 := logy(tk−2) y(tk−1) , k ≥ 2 . (3.25)

That means, once we have defined a discrete version EXP2
p corresponding to expp(2·), we can use the recursive

relation (3.25) to define EXPkp for k ≥ 2 by

yk = EXPkp(V1) = EXP2
yk−2

(Vk−1) , Vk−1 = yk−1 − yk−2 , (3.26)

for given y0 = p and y1 = y0 + V1, as shown in Fig. 6.

y0 = p

V1 y1 y2
yk−2 yk−1

Vk−1

yk

Figure 6: A sketch of the polygonal path associated with the computation of EXPkp(V1).

7Note that these displacements are indeed well-defined, as we assumed thatM embeds into a Banach space.
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Note that the discrete analogon of Vk−1 is exactly Vk−1 = ( 1
1LOG)

yk−2
yk−1 = yk−1 − yk−2.

It remains to define a discrete version EXP2
p corresponding to expp(2·). Formally, we have the identity 1

2 logp
(
expp(2V )

)
=

V , i.e. we can define EXP2
y0(y1 − y0) as the root of the function

z 7→ ( 1
2LOG)

y0
(z)− (y1 − y0)

for given y0, y1 ∈ M. In fact, we are seeking for a third point y2 ∈ M, such that (y0, y1, y2) is a time-discrete
geodesic for K = 2. Using Def. 3.9, a necessary condition of this is given by

0 = ∂2W[y0, y1](ψ) + ∂1W[y1, y2](ψ) ∀ψ ∈ V ,

where ∂iW denotes the Gâteaux derivative with respect to the ith argument ofW . Hence we define:

Definition 3.25 (Discrete exponential map). For given points y0, y1 ∈ M, V1 = y1 − y0, we define EXP2
y0(V1)

as the solution of

∂2W[y0, y1](ψ) + ∂1W[y1, y](ψ) = 0 ∀ψ ∈ V ,

and hence EXPky0(V1) = EXP2
yk−2

(Vk−1) for Vk−1 = yk−1 − yk−2 and k ≥ 2.

It is straightforward to verify that EXPKp = ( 1
KLOG)

−1

p
as long as the discrete logarithm is invertible. In fact, the

Euler–Lagrange equations for (y0, . . . , yK) being a discrete geodesic with fixed end points y0 and yK are given by
the K − 1 nonlinear equations

0 = ∂2W[yk−1, yk](ψ) + ∂1W[yk, yk+1](ψ) ∀ψ ∈ V , k = 1, . . . ,K − 1 , (3.27)

which have to be solved simultaneously. On the other hand, if we compute EXPky0(y1− y0) for given y0, y1 ∈M
and k = 2, . . . ,K, we get exactly the same system (3.27). However, in this case the system can be solved sequen-
tially.

Finally, we introduce a time-discrete notion of parallel transport along a discrete path as proposed in [RW15]. In
the continuous setting, given a path y : [0, 1]→M and a vector V0 ∈ Ty(0)M, parallel transport Py(0)→y(τ)V0 of
V0 along the path y is defined as the solution of the initial value problem D

dtV (t) = 0 for t ∈ [0, τ ] and V (0) = V0.
There is a well-known first-order approximation of parallel transport called Schild’s ladder (cf . [EPS72, KMN00]),
which is based on the construction of a sequence of so-called geodesic parallelograms; this method has been used
e.g. by Lorenzi et al. [LAP11] to perform parallel transport of deformations along time series of images (see also
[PL11]). We once more use the notation yk = y(tk), tk = kτ , for samples of the path y : [0, 1] → M. Given a
tangent vector Vk−1 ∈ Tyk−1

M, the approximation Vk ∈ TykM of the parallely transported vector Pyk−1→ykVk−1

via a geodesic parallelogram is illustrated in Fig. 7.
The scheme in Fig. 7 can be easily transferred to the time-discrete setup by replacing y by a discrete path
(y0, . . . , yK) and the geodesics that define the geodesic parallelogram by time-discrete geodesics, e.g. of length 3.
Conceptually, we will again replace tangent or velocity vectors V by displacements ζ of points.
Remark: Let p0, p1, p2 ∈ M. We define p̂ = p̂(p0, p1, p2) such that (p0, p

c, p2) and (p1, p
c, p̂) are discrete

geodesics for some pc ∈ M. Then (p0, p1, p2, p̂) defines a discrete geodesic parallelogram, pc is refered to as
center point of the parallelogram.
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M
y(t)

yk−1

yk

ypk−1

ypk
yck
•

Vk−1

Vk
•

•

•

•

ypk−1 = expyk−1
(Vk−1)

yck = expypk−1

(
1
2 logypk−1

(yk)
)

ypk = expyk−1

(
2 logyk−1

(yck)
)

Vk = logyk(ypk)

Figure 7: A sketch of the parallel transport of Vk−1 ∈ Tyk−1
M from yk−1 to yk along y via Schild’s ladder. Here,

yck is the midpoint of the two diagonals of the geodesic parallogramm, i.e. (ypk−1, y
c
k, yk) and (yk−1, y

c
k, y

p
k), which

are both geodesic curves.

Definition 3.26 (Discrete parallel transport). Let (y0, . . . , yK) be a discrete path in M̊ with yk− yk−1 sufficiently
small for k = 1, . . . ,K and ζ0 a sufficiently small displacement of y0, given as yp0 = y0 + ζ0. Then the discrete
parallel transport of ζ0 along (y0, . . . , yK) is defined for k = 1, . . . ,K via the iteration

yk−1

yk

ζk−1

ypk−1

yck

ypk

ζk
yck = ypk−1 +

(
( 1

2LOG)
ypk−1

(yk)
)
,

ypk = EXP2
yk−1

(yck − yk−1) ,

where ζk = ypk − yk is the transported displacement at yk. We define

PyK ,...,y0(yp0 − y0) = ypK − yK .

The notation is chosen such that PyK ,...,y0PỹK ,...,ỹ0 = PyK ,...,y0,ỹK ,...,ỹ0 .

In the kth step of the discrete parallel transport the Euler–Lagrange equations to determine yck and ypk = yk + ζk
for given ypk−1 = yk−1 + ζk−1 and discrete path (y0, . . . , yK) are

W,2[ypk−1, y
c
k](ψ) +W,1[yck, yk](ψ) = 0 ∀ψ ∈ V ,

W,2[yk−1, y
c
k](ψ) +W,1[yck, y

p
k](ψ) = 0 ∀ψ ∈ V .

IfW is symmetric, these conditions are the same as the Euler–Lagrange equations for inverse parallel transport, so
that P−1

yK ,...,y0 = Py0,...,yK . However, ifW is not symmetric this is not true in general.
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second Portuguese edition.

[DGDM83] Ennio De Giorgi and Gianni Dal Maso. Γ-convergence and calculus of variations. In Mathematical
theories of optimization (Genova, 1981), volume 979 of Lecture Notes in Math., pages 121–143.
Springer, Berlin, 1983.

47



[DH02] Peter Deuflhard and Andreas Hohmann. Numerische Mathematik. I. de Gruyter Lehrbuch. [de
Gruyter Textbook]. Walter de Gruyter & Co., Berlin, third edition, 2002. Eine algorithmisch ori-
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[HRS+14] Behrend Heeren, Martin Rumpf, Peter Schröder, Max Wardetzky, and Benedikt Wirth. Exploring the
geometry of the space of shells. Comput. Graph. Forum, 33(5):247–256, 2014.
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