Aufgabe 25

Zeigen Sie, dass ein Spline \(s(t) = \sum_{i=1}^{n} d_i N_{i,k}(t) \) in B-Spline-Darstellung bezüglich der Knoten \(\{ \tau_i \mid i = 1, \ldots n+k \} \) (der erweiterten Knotenmenge) für alle \(l \leq k \) die folgende Darstellung hat:

\[
s(t) = \sum_{i=l+1}^{n} d^l_i(t) N_{i,k-l}(t)
\]

Dabei sind die \(d^l_i \) definiert durch

\[
d^0_i(t) = d_i,
\]

\[
d^l_i(t) = \begin{cases}
\frac{t-\tau_i}{\tau_{i+k-l}-\tau_i} d^{l-1}_i(t) + \frac{\tau_{i+k-l}-t}{\tau_{i+k-l}-\tau_i} d^{l-1}_{i-1}(t) & : \text{falls } \tau_{i+k-l} \neq \tau_i, \\
0 & : \text{sonst},
\end{cases}
\]

für \(l > 0 \).

Lösung

Beweis durch Induktion über \(l \), Induktionsverankerung für \(l = 0 \) klar.
Induktionsschritt $l \to l + 1$: Angenommen $s(t) = \sum_{i=l+1}^n d_i^l(t)N_{i,k-l}(t)$.

\[
\sum_{i=l+2}^n d_i^{l+1}(t)N_{i,k-l-1}(t) = \sum_{i=l+2}^n \left(\frac{t - \tau_i}{\tau_{i+k-l-1} - \tau_i} d_i^l(t) + \frac{\tau_{i+k-l-1} - t}{\tau_{i+k-l-1} - \tau_i} d_i^{l-1}(t) \right) N_{i,k-l-1}(t)
\]

\[
= \sum_{i=l+2}^n \frac{t - \tau_i}{\tau_{i+k-l-1} - \tau_i} d_i^l(t)N_{i,k-l-1}(t) + \sum_{i=l+1}^{n-1} \frac{\tau_{i+k-l-1} - t}{\tau_{i+k-l-1} - \tau_i} d_i^{l-1}(t)N_{i+1,k-l-1}(t)
\]

\[
= \sum_{i=l+1}^n d_i^l(t) \left(\frac{t - \tau_i}{\tau_{i+k-l-1} - \tau_i} N_{i,k-l-1}(t) + \frac{\tau_{i+k-l-1} - t}{\tau_{i+k-l-1} - \tau_i} N_{i+1,k-l-1}(t) \right)
\]

\[
= \sum_{i=l+1}^n d_i^l(t)N_{i,k-l}(t) = s(t)
\]

Dabei fügt man die beiden Termen

\[
\frac{t - \tau_{l+1}}{\tau_k - \tau_l} d_{l+1}^l(t)N_{l+1,k-l-1}(t) \quad \text{und} \quad \frac{\tau_{n+k-l} - t}{\tau_{n+k-l} - \tau_{n+1}} d_n^l(t)N_{n+1,k-l-1}(t)
\]

in die Summe ein, die für $l < k$ (d.h. $l + 1 \leq k$, genau der Fall ist ja zu beweisen) entsprechend der Konvention ($\tau_1 = \cdots = \tau_k$ und $\tau_{n+1} = \cdots = \tau_{n+k}$) Null sind.

Aufgabe 26

Sei $s \in S_{4,\Delta}$ ein Spline sowie $s_j := s(t_j)$ und $m_j := s''(t_j)$. Zeigen Sie, dass sich s auf $[t_{j-1}, t_j]$ als

\[
s(t) = \frac{1}{h_j} \left(m_{j-1} \frac{(t_j - t)^3}{6} + m_j \frac{(t - t_{j-1})^3}{6} \right) + c_j(t - t_{j-1}) + d_j
\]

schreiben lässt, wobei

\[
h_j := t_j - t_{j-1}, \\
c_j := \frac{s_j - s_{j-1}}{h_j} - \frac{h_j}{6} (m_j - m_{j-1}), \\
d_j := s_{j-1} - m_{j-1} - \frac{h_j^2}{6}.
\]

Lösung

Da $s \in S_{4,\Delta}$, ist $s|_{[t_{j-1}, t_j]}$ kubisches Polynom. Somit ist s'' linear. Zusammen mit $s''(t_{j-1}) = m_{j-1}$ und $s''(t_j) = m_j$ ist also

\[
s''(t) = \left(m_{j-1} (t_j - t) + m_j (t - t_{j-1}) \right) \frac{1}{t_j - t_{j-1}}
\]

\[
= \frac{1}{h_j} \left(m_{j-1} (t_j - t) + m_j (t - t_{j-1}) \right)
\]
Aufintegrieren ergibt

\[s'(t) = \frac{1}{h_j} \left(-m_{j-1} \frac{(t_j - t)^2}{2} + m_j \frac{(t - t_{j-1})^2}{2}\right) + c_j \]

und

\[s(t) = \frac{1}{h_j} \left(m_{j-1} \frac{(t_j - t)^3}{6} + m_j \frac{(t - t_{j-1})^3}{6}\right) + c_j(t - t_{j-1}) + d_j \]

wobei \(c_j \) und \(d_j \) noch beliebige Integrationskonstanten sind. Nach Vorraussetzung gilt aber

\[s_{j-1} = s(t_{j-1}) = \frac{1}{h_j} \left(m_{j-1} \frac{h_j^3}{6}\right) + 0 + d_j \]

\[\Rightarrow d_j = s_{j-1} - m_{j-1} \frac{h_j^2}{6} \]

und

\[s_j = s(t_j) = \frac{1}{h_j} \left(0 + m_j \frac{h_j^3}{6}\right) + c_jh_j + s_{j-1} - m_{j-1} \frac{h_j^2}{6} \]

\[\Rightarrow c_jh_j = s_j - m_j \frac{h_j^2}{6} - s_{j-1} + m_{j-1} \frac{h_j^2}{6} \]

\[= s_j - s_{j-1} - \frac{h_j^2}{6}(m_j - m_{j-1}) \]

\[\Rightarrow c_j = \frac{s_j - s_{j-1}}{t_j - t_{j-1}} - \frac{h_j}{6}(m_j - m_{j-1}) \]

Aufgabe 27

Der Spline \(s \in S_{4\Delta} \) interpoliere eine Funktion \(f \), d. h. \(s_j = f(t_j) \). Zeigen Sie, dass \((m_j)_{j=0,...,l+1} \) aus Aufgabe 26 die Gleichungen

\[\mu_j m_{j-1} + 2m_j + \lambda_j m_{j+1} = 6D_{t_{j-1}t_{j+1}}f \]

für \(j = 1, \ldots, l \) erfüllt, wobei

\[\mu_j := \frac{h_j}{h_j + h_{j+1}}, \quad \lambda_j := \frac{h_{j+1}}{h_j + h_{j+1}}. \]

Hinweis: Verwenden Sie die Stetigkeit von \(s' \) an den Stellen \(t_j \).

Lösung
Aus Aufgabe 26 ergibt sich
\[s'_1(t) := s'_{|_{t_{j-1},t_j}}(t) = \frac{1}{h_j} \left(-m_{j-1} \frac{(t_j-t)^2}{2} + m_j \frac{(t-t_{j-1})^2}{2} \right) + c_j \]
und
\[s'_2(t) := s'_{|_{t_j,t_{j+1}}}(t) = \frac{1}{h_{j+1}} \left(-m_j \frac{(t_{j+1}-t)^2}{2} + m_{j+1} \frac{(t-t_j)^2}{2} \right) + c_{j+1} \]

Wegen der Stetigkeit von \(s'\) ist \(s'_1(t_j) = s'_2(t_j)\) gilt also mit \(D_{t_j-t_{j-1}} = \frac{s_j-s_{j-1}}{t_j-t_{j-1}}\)
\[\frac{m_j h_j}{2} + c_j = -\frac{m_j h_{j+1}}{2} + c_{j+1} \]
\[\frac{m_j}{2} (h_j + h_{j+1}) = c_{j+1} - c_j \]
\[= D_{t_{j+1},t_j} f - D_{t_j-t_{j-1}} f - \frac{h_{j+1}}{6} (m_{j+1} - m_j) + \frac{h_j}{6} (m_j - m_{j-1}) \]
\[\Leftrightarrow \frac{m_j}{2} = D_{t_{j+1},t_j} f - \frac{\lambda_j}{6} (m_{j+1} - m_j) + \frac{\mu_j}{6} (m_j - m_{j-1}) \]
\[\Leftrightarrow 6D_{t_{j+1},t_j} f = \mu_j m_{j-1} + 2m_j + \lambda_j m_{j+1} \]

Aufgabe 28
Notieren Sie die Gleichungssysteme für \((m_j)_{j=0,\ldots,l+1}\) mit den Randbedingungen
1. \(s''(t_0) = s''(t_{l+1}) = 0\) und
2. \(s^{(k)}(t_0) = s^{(k)}(t_{l+1})\) für \(k = 1, 2\).

Lösung
1. \(s''(t_0) = s''(t_{l+1}) = 0\). Damit lautet das LGS
\[
\begin{pmatrix}
1 & \mu_1 & 2 & \lambda_1 \\
& \ddots & \ddots & \ddots \\
& & \mu_l & 2 & \lambda_l \\
& & & & 1
\end{pmatrix}
\begin{pmatrix}
m_0 \\
m_1 \\
\vdots \\
m_l \\
m_{l+1}
\end{pmatrix}
= \begin{pmatrix}
0 \\
6D_{t_0,t_1} f \\
\vdots \\
6D_{t_{l-1},t_{l+1}} f \\
0
\end{pmatrix}
\]
2. $s^{(k)}(t_0) = s^{(k)}(t_{l+1})$ für $k = 1, 2$.

Zunächst sei $s''(t_0) = s''(t_{l+1})$ also $m_0 = m_{l+1}$. Daraus folgt zusammen mit $s'(t_0) = s'(t_{l+1})$

\[-\frac{m_0 h_1}{2} + D_{t_0 t_1} f - \frac{h_1}{6} (m_1 - m_0) = -\frac{m_{l+1} h_{l+1}}{2} + D_{t_l t_{l+1}} f - \frac{h_{l+1}}{6} (m_{l+1} - m_l)\]

\[\Leftrightarrow 6(D_{t_0 t_1} f - D_{t_l t_{l+1}} f) = h_1 (2m_0 + m_1) + h_{l+1} (2m_{l+1} + m_l)\]

\[\Leftrightarrow 6(D_{t_0 t_1} f - D_{t_l t_{l+1}} f) = 2(h_1 + h_{l+1}) m_0 + h_1 m_1 + h_{l+1} m_l\]

Es ergibt sich das LGS

\[
\begin{pmatrix}
2(h_1 + h_{l+1}) & h_1 & h_{l+1} \\
\mu_1 & 2 & \lambda_1 \\
& \ddots & \ddots & \ddots \\
\lambda_l & \mu_{l-1} & 2 & \lambda_{l-1} \\
\end{pmatrix}
\begin{pmatrix}
m_0 \\
m_1 \\
\vdots \\
m_{l-1} \\
m_l \\
\end{pmatrix}
=
\begin{pmatrix}
6(D_{t_0 t_1} f - D_{t_l t_{l+1}} f) \\
6D_{t_0 t_1} t_2 f \\
\vdots \\
6D_{t_{l-1} t_l} t_{l+1} f \\
\end{pmatrix}
\]

und $m_0 = m_{l+1}$.