maximize

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

Submitted Articles

[1] A. Effland, M. Rumpf, and F. Schäfer. Image extrapolation for the time discrete metamorphosis model - existence and applications, 2017. submitted. [ bib | arXiv | .pdf ]
[2] M. Erbar, M. Rumpf, B. Schmitzer, and S. Simon. Computation of optimal transport on discrete metric measure spaces, 2017. submitted. [ bib | arXiv | arXiv | .pdf ]
[3] N. Lüthen, M. Rumpf, S. Tölkes, and O. Vantzos. Branching structures in elastic shape optimization. 2017. submitted. [ bib | arXiv | arXiv | .pdf | Abstract ]
[4] S. Conti, M. Rumpf, R. Schultz, and S. Tölkes. Stochastic dominance constraints in elastic shape optimization. 2016. submitted. [ bib | arXiv | arXiv | .pdf | Abstract ]
[5] P. Hornung, M. Rumpf, and S. Simon. Material optimization for nonlinearly elastic planar beams. 2016. submitted. [ bib | arXiv | arXiv | .pdf ]

2016

[1] S. Conti, M. Lenz, and M. Rumpf. Hysteresis in magnetic shape memory composites: Modeling and simulation. J. Mech. Phys. Solids, 89:272-286, 2016. [ bib | DOI | arXiv | .pdf | Abstract ]
[2] P. W. Dondl, B. Heeren, and M. Rumpf. Optimization of the branching pattern in coherent phase transitions. C. R. Math. Acad. Sci. Paris, 354(6):639-644, 2016. [ bib | arXiv | Abstract ]
[3] B. Geihe and M. Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete and Continuous Dynamical Systems - Series S, 9(5):1377-1392, 2016. [ bib | DOI | arXiv | http | .pdf | Abstract ]
[4] B. Heeren. Numerical Methods in Shape Spaces and Optimal Branching Patterns. PhD thesis, University of Bonn, 2016. [ bib ]
[5] B. Heeren, M. Rumpf, P. Schröder, M. Wardetzky, and B. Wirth. Splines in the space of shells. Comput. Graph. Forum, 35(5):111-120, 2016. [ bib | .pdf ]
[6] B. Jüttler, A. Mantzaflaris, R. Perl, and M. Rumpf. On numerical integration in isogeometric subdivision methods for PDEs on surfaces. Computer Methods in Applied Mechanics and Engineering, 302:131-146, 2016. [ bib | DOI ]
[7] S. Markett, C. Montag, B. Heeren, R. Sariyska, B. Lachmann, B. Weber, and M. Reuter. Voxelwise eigenvector centrality mapping of the human functional connectome reveals an influence of the catechol-o-methyltransferase val158met polymorphism on the default mode and somatomotor network. Brain Structure and Function, 221:2755-2765, 2016. [ bib | DOI ]

2015

[1] O. Azencot, O. Vantzos, M. Wardetzky, M. Rumpf, and M. Ben-Chen. Functional thin films on surfaces. In Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 137-146, 2015. [ bib | DOI | Abstract ]
[2] B. Berkels, A. Effland, and M. Rumpf. Time discrete geodesic paths in the space of images. SIAM J. Imaging Sci., 8(3):1457-1488, 2015. [ bib | DOI | arXiv | .pdf | Abstract ]
[3] S. Conti, J. Ginster, and M. Rumpf. A BV functional and its relaxation for joint motion estimation and image sequence recovery. ESAIM: Mathematical Modelling and Numerical Analysis, 49(5):1463-1487, 2015. [ bib | DOI | Abstract ]
[4] A. Effland, M. Rumpf, S. Simon, K. Stahn, and B. Wirth. Bézier curves in the space of images. In Proc. of International Conference on Scale Space and Variational Methods in Computer Vision, volume 9087 of Lecture Notes in Computer Science, pages 372-384. Springer, Cham, 2015. [ bib | arXiv | Abstract ]
[5] J. Maas, M. Rumpf, C. Schönlieb, and S. Simon. A generalized model for optimal transport of images including dissipation and density modulation. ESAIM Math. Model. Numer. Anal., 49(6):1745-1769, 2015. [ bib | DOI | arXiv | Abstract ]
[6] R. Perl. Isogeometric Approximation of Variational Problems for Shells. PhD thesis, University of Bonn, 2015. [ bib ]
[7] M. Rumpf and B. Wirth. Variational time discretization of geodesic calculus. IMA J. Numer. Anal., 35(3):1011-1046, 2015. [ bib | DOI | arXiv ]
[8] C. Zhang, B. Heeren, M. Rumpf, and W. Smith. Shell PCA: statistical shape modelling in shell space. In Proc. of IEEE International Conference on Computer Vision, 2015. [ bib | .pdf ]

2014

[1] B. Berkels, I. Cabrilo, S. Haller, M. Rumpf, and K. Schaller. Co-registration of intra-operative brain surface photographs and pre-operative MR images. International Journal of Computer Assisted Radiology and Surgery, 9(3):387-400, May 2014. [ bib | DOI | .pdf ]
[2] S. Conti, B. Geihe, M. Rumpf, and R. Schultz. Two-stage stochastic optimization meets two-scale simulation. In G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher, and S. Ulbrich, editors, Trends in PDE Constrained Optimization, volume 165 of International Series of Numerical Mathematics, pages 193-211. Springer International Publishing, 2014. [ bib | DOI | http | .pdf | Abstract ]
[3] B. Heeren, M. Rumpf, P. Schröder, M. Wardetzky, and B. Wirth. Exploring the geometry of the space of shells. Comput. Graph. Forum, 33(5):247-256, 2014. [ bib | .pdf ]
[4] M. Pach. Risikoaverse Formoptimierung - Risikomaße und stochastische Ordnungen. Dissertation, Universität Duisburg-Essen, 2014. [ bib | http ]
[5] R. Perl, P. Pozzi, and M. Rumpf. A nested variational time discretization for parametric anisotropic willmore flow. In M. Griebel, editor, Singular Phenomena and Scaling in Mathematical Models, pages 221-241. Springer, Cham, 2014. [ bib | DOI | Abstract ]
[6] M. Rumpf and M. Wardetzky. Geometry processing from an elastic perspective. GAMM-Mitt., 37(2):184-216, 2014. [ bib | DOI | .pdf ]
[7] O. Vantzos. Thin viscous films on curved geometries. PhD thesis, University of Bonn, 2014. [ bib | http ]

2013

[1] B. Berkels, S. Bauer, S. Ettl, O. Arold, J. Hornegger, and M. Rumpf. Joint surface reconstruction and 4D deformation estimation from sparse data and prior knowledge for marker-less respiratory motion tracking. Medical Physics, 40(9):091703, September 2013. [ bib | DOI ]
[2] A. B. Yankovich, B. Berkels, W. Dahmen, R. C. Sharpley, P. Binev, and P. M. Voyles. Measuring surface atom bond length contraction in Au and Pt nanoparticles using high-precision STEM imaging. In Microscopy and Microanalysis, volume 19 (Supplement 2), pages 1688-1689. Cambridge University Press, August 2013. [ bib | DOI ]
[3] B. Berkels, I. Cabrilo, S. Haller, M. Rumpf, and K. Schaller. Co-registration of intra-operative photographs and pre-operative MR images. In Bildverarbeitung für die Medizin 2013, Informatik aktuell, pages 122-127. Springer, 2013. [ bib | DOI | .pdf ]
[4] B. Berkels, P. T. Fletcher, B. Heeren, M. Rumpf, and B. Wirth. Discrete geodesic regression in shape space. In Proc. of International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, volume 8081 of Lecture Notes in Computer Science, pages 108-122. Springer, 2013. [ bib | DOI | .pdf ]
[5] M. Franken, M. Rumpf, and B. Wirth. A phase field based PDE constraint optimization approach to time discrete Willmore flow. International Journal of Numerical Analysis and Modeling, 10(1):116-138, 2013. [ bib | .pdf ]
[6] B. Geihe, M. Lenz, M. Rumpf, and R. Schultz. Risk averse elastic shape optimization with parametrized fine scale geometry. Mathematical Programming, 141(1-2):383-403, 2013. [ bib | DOI | http | .pdf | Abstract ]
[7] J. Iglesias, B. Berkels, M. Rumpf, and O. Scherzer. A thin shell approach to the registration of implicit surfaces. In M. Bronstein, J. Favre, and K. Hormann, editors, Vision, Modeling and Visualization, pages 89-96. Eurographics Association, 2013. [ bib | DOI | .pdf ]
[8] M. Rumpf and O. Vantzos. Natural gradient flow discretization of viscous thin films on curved geometries. Mathematical Models and Methods in Applied Sciences, 23(05):917-947, 2013. [ bib | DOI | .pdf ]
[9] M. Rumpf and B. Wirth. Discrete geodesic calculus in shape space and applications in the space of viscous fluidic objects. SIAM J. Imaging Sci., 6(4):2581-2602, 2013. [ bib | arXiv | .pdf | Abstract ]

2012

[1] P. Atwal, S. Conti, B. Geihe, M. Pach, M. Rumpf, and R. Schultz. On shape optimization with stochastic loadings. In G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich, editors, Constrained Optimization and Optimal Control for Partial Differential Equations, volume 160 of International Series of Numerical Mathematics, chapter 2, pages 215-243. Springer, Basel, 2012. [ bib | DOI | http | .pdf | Abstract ]
[2] N. Balzani and M. Rumpf. A nested variational time discretization for parametric Willmore flow. Interfaces Free Bound., 14(4):431-454, 2012. [ bib | DOI | .pdf ]
[3] S. Bauer, B. Berkels, S. Ettl, O. Arold, J. Hornegger, and M. Rumpf. Marker-less reconstruction of dense 4-d surface motion fields using active laser triangulation from sparse measurements for respiratory motion management. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 7510 of Lecture Notes in Computer Science, pages 414-421. Springer, 2012. [ bib | DOI | .pdf ]
[4] S. Conti, M. Lenz, and M. Rumpf. Modeling and simulation of large microstructured particles in magnetic-shape-memory. Advanced Engineering Materials, 14(8):582-588, 2012. [ bib | DOI | .pdf | Abstract ]
[5] B. Heeren, M. Rumpf, M. Wardetzky, and B. Wirth. Time-discrete geodesics in the space of shells. Comput. Graph. Forum, 31(5):1755-1764, 2012. [ bib | DOI | .pdf ]
[6] S. F. Nemadjieu. Finite Volume Methods for Advection Diffusion on Moving Interfaces and Application on Surfactant Driven Thin Film Flow. Dissertation, University of Bonn, 2012. [ bib | http | .pdf ]
[7] P. Penzler, M. Rumpf, and B. Wirth. A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM: Control, Optimisation and Calculus of Variations, 18(1):229-258, 2012. [ bib | DOI | .pdf ]

2011

[1] S. Bauer, B. Berkels, J. Hornegger, and M. Rumpf. Joint ToF image denoising and registration with a CT surface in radiation therapy. In Third International Conference on Scale Space Methods and Variational Methods in Computer Vision, Lecture Notes in Computer Science, pages 98-109. Springer, 2011. [ bib | DOI | .pdf ]
[2] B. Berkels, M. Kotowski, M. Rumpf, and C. Schaller. Sulci detection in photos of the human cortex based on learned discriminative dictionaries. In Third International Conference on Scale Space Methods and Variational Methods in Computer Vision, Lecture Notes in Computer Science, pages 326-337. Springer, 2011. [ bib | DOI | .pdf ]
[3] S. Conti, H. Held, M. Pach, M. Rumpf, and R. Schultz. Risk averse shape optimization. SIAM Journal on Control and Optimization, 49(3):927-947, 2011. [ bib | DOI | .pdf | Abstract ]
[4] B. Heeren. Geodätische im Raum von Schalenformen. diploma thesis, 2011. [ bib | .pdf ]
[5] M. Lenz, S. F. Nemadjieu, and M. Rumpf. A convergent finite volume scheme for diffusion on evolving surfaces. SIAM Journal on Numerical Analysis, 49(1):15-37, 2011. [ bib | DOI | .pdf | Abstract ]
[6] T. Preusser, M. Rumpf, S. Sauter, and L. O. Schwen. 3D composite finite elements for elliptic boundary value problems with discontinuous coefficients. SIAM Journal on Scientific Computing, 33(5):2115-2143, 2011. [ bib | DOI | .pdf | Abstract ]
[7] M. Rumpf and B. Wirth. Variational methods in shape analysis. In O. Scherzer, editor, Handbook of Mathematical Methods in Imaging, pages 1363-1401. Springer, 2011. [ bib | DOI | .pdf ]
[8] M. Rumpf and B. Wirth. An elasticity-based covariance analysis of shapes. Int. J. Comput. Vis., 92(3):281-295, 2011. [ bib | DOI | .pdf ]
[9] B. Wirth, L. Bar, M. Rumpf, and G. Sapiro. A continuum mechanical approach to geodesics in shape space. Int. J. Comput. Vis., 93(3):293-318, 2011. [ bib | DOI | .pdf ]

2010

[1] B. Berkels. Joint methods in imaging based on diffuse image representations. Dissertation, University of Bonn, 2010. [ bib | http | Abstract ]
[2] B. Berkels, G. Linkmann, and M. Rumpf. An SL(2) invariant shape median. Journal of Mathematical Imaging and Vision, 37(2):85-97, 2010. [ bib | DOI | .pdf ]
[3] M. Boerdgen, B. Berkels, M. Rumpf, and D. Cremers. Convex relaxation for grain segmentation at atomic scale. In D. Fellner, editor, Vision, Modeling and Visualization, pages 179-186. Eurographics Association, 2010. [ bib | DOI | .pdf ]
[4] S. W. von Deylen. Diplomarbeit über einen Variationsansatz zur optimalen Parametrisierung implizit gegebener Flächen und seine numerische Implementation. Diplomarbeit, Bonn University, 2010. [ bib | .pdf ]
[5] S. F. Nemadjieu. A convergent finite volume type o-method on evolving surfaces. In Proceedings of the 8th International Conference of Numerical Analysis and Applied Mathematics, volume 1281 of AIP Conference Proceedings, pages 2184-2187, 2010. [ bib | DOI | .pdf | Abstract ]
[6] C. Nieuwenhuis, B. Berkels, M. Rumpf, and D. Cremers. Interactive motion segmentation. In 32nd DAGM Symposium on Pattern Recognition, volume 6376 of Lecture Notes in Computer Science, pages 483-492. Springer, 2010. [ bib | DOI | .pdf ]
[7] N. Olischläger. Processing Elastic Surfaces and Related Gradient Flows. Dissertation, University Bonn, 2010. [ bib | http | .pdf | Abstract ]
[8] M. Rumpf, L. O. Schwen, H.-J. Wilke, and U. Wolfram. Numerical homogenization of trabecular bone specimens using composite finite elements. In Multiphysics Simulations - Advanced Methods for Industrial Engineering, pages 127-143. Fraunhofer, Multi-Science Publishing, 2010. [ bib | .pdf | Abstract ]
[9] C. Schlimper, O. Nemitz, U. Dorenbeck, J. Scorzin, R. Whitaker, T. Tasdizen, M. Rumpf, and K. Schaller. Restoring three-dimensional magnetic resonance angiography images with mean curvature motion. Neurological Research, 32(1):87-93, 2010. [ bib | DOI | Abstract ]
[10] L. O. Schwen. Composite Finite Elements for Trabecular Bone Microstructures. Dissertation, University of Bonn, 2010. [ bib | .pdf | Abstract ]

2009

[1] U. Wolfram, L. O. Schwen, U. Simon, M. Rumpf, and H.-J. Wilke. Statistical osteoporosis models using composite finite elements: A parameter study. Journal of Biomechanics, 42(13):2205-2209, September 2009. [ bib | DOI | .pdf | Abstract ]
[2] F. Liehr, T. Preusser, M. Rumpf, S. Sauter, and L. O. Schwen. Composite finite elements for 3D image based computing. Computing and Visualization in Science, 12(4):171-188, April 2009. [ bib | DOI | .pdf | Abstract ]
[3] B. Berkels. An unconstrained multiphase thresholding approach for image segmentation. In Proceedings of the Second International Conference on Scale Space Methods and Variational Methods in Computer Vision (SSVM 2009), volume 5567 of Lecture Notes in Computer Science, pages 26-37. Springer, 2009. [ bib | DOI | .pdf ]
[4] B. Berkels, C. Kondermann, C. Garbe, and M. Rumpf. Reconstructing optical flow fields by motion inpainting. In 7th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, volume 5681 of Lecture Notes in Computer Science, pages 388-400. Springer, 2009. [ bib | DOI | .pdf ]
[5] S. Conti, H. Held, M. Pach, M. Rumpf, and R. Schultz. Shape optimization under uncertainty - a stochastic programming perspective. SIAM Journal on Optimization, 19(4):1610-1632, 2009. [ bib | DOI | .pdf ]
[6] M. Droske, W. Ring, and M. Rumpf. Mumford-Shah based registration: a comparison of a level set and a phase field approach. Computing and Visualization in Science, 12:101-114, 2009. [ bib | DOI | .pdf ]
[7] C. Eck, M. Fontelos, G. Grün, F. Klingbeil, and O. Vantzos. On a phase-field model for electrowetting. Interfaces and Free Boundaries, 11(2):259-290, 2009. [ bib | DOI ]
[8] O. Nemitz, M. B. Nielsen, M. Rumpf, and R. Whitaker. Finite element methods on very large, dynamic tubular grid encoded implicit surfaces. SIAM Journal on Scientific Computing, 31(3):2258-2281, 2009. [ bib | DOI | .pdf | Abstract ]
[9] N. Olischläger and M. Rumpf. Two step time discretization of Willmore flow. In E. R. Hancock, R. R. Martin, and M. A. Sabin, editors, IMA Conference on the Mathematics of Surfaces, volume 5654 of Lecture Notes in Computer Science, pages 278-292. Springer, 2009. [ bib | DOI | .pdf ]
[10] M. Rumpf. Variational methods in image matching and motion extraction. In M. Burger and S. Osher, editors, Level Set and PDE based Reconstruction Methods: Applications to Inverse Problems and Image Processing, Lecture Notes in Mathematics. Springer, 2009. to appear as CIME course notes. [ bib | .pdf ]
[11] M. Rumpf and B. Wirth. A nonlinear elastic shape averaging approach. SIAM J. Imaging Sci., 2(3):800-833, 2009. [ bib | DOI | .pdf | Abstract ]
[12] M. Rumpf and B. Wirth. An elasticity approach to principal modes of shape variation. In Proc. of International Conference on Scale Space Methods and Variational Methods in Computer Vision, volume 5567 of Lecture Notes in Computer Science, pages 709-720, 2009. [ bib | .pdf ]
[13] L. O. Schwen, T. Preusser, and M. Rumpf. Composite finite elements for 3D elasticity with discontinuous coefficients. In 16th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields. University of Ulm, 2009. to appear. [ bib | .pdf | Abstract ]
[14] B. Wirth. Variational methods in shape space. Dissertation, University Bonn, 2009. [ bib | http ]
[15] B. Wirth, L. Bar, M. Rumpf, and G. Sapiro. Geodesics in shape space via variational time discretization. In Proc. of International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, volume 5681 of Lecture Notes in Computer Science, pages 288-302, 2009. [ bib | DOI | .pdf ]

2008

[1] B. Berkels, A. Rätz, M. Rumpf, and A. Voigt. Extracting grain boundaries and macroscopic deformations from images on atomic scale. Journal of Scientific Computing, 35(1):1-23, April 2008. [ bib | DOI | .pdf ]
[2] J. F. Acker, B. Berkels, K. Bredies, M. S. Diallo, M. Droske, C. S. Garbe, M. Holschneider, J. Hron, C. Kondermann, M. Kulesh, P. Mass, N. Olischläger, H.-O. Peitgen, T. Preusser, M. Rumpf, K. Schaller, F. Scherbaum, and S. Turek. Mathematical Methods in Time Series Analysis and Digital Image Processing, chapter Inverse Problems and Parameter Identification in Image Processing, pages 111-151. Understanding Complex Systems. Springer, 2008. [ bib | DOI | .pdf ]
[3] B. Berkels, G. Linkmann, and M. Rumpf. A shape median based on symmetric area differences. In O. Deussen, D. Keim, and D. Saupe, editors, Vision, Modeling and Visualization, pages 399-407. AKA Publishing, 2008. [ bib | .pdf ]
[4] S. Conti, M. Lenz, and M. Rumpf. Macroscopic behaviour of magnetic shape-memory polycrystals and polymer composites. In 7th European Symposium on Martensitic Transformations and Shape Memory Alloys, volume 481-482 of Materials Science and Engineering: A, pages 351-355, 2008. [ bib | DOI | .pdf | Abstract ]
[5] M. Fontelos, U. Kindelan, and O. Vantzos. Evolution of neutral and charged droplets in an electric field. Physics of Fluids, 20(9), 2008. [ bib | DOI ]
[6] M. Lenz, S. F. Nemadjieu, and M. Rumpf. Finite volume method on moving surfaces. In R. Eymard and J.-M. Hérald, editors, Finite Volumes for Complex Applications V, pages 561-576. Wiley, 2008. [ bib | .pdf | Abstract ]
[7] O. Nemitz. Anisotrope Verfahren in der Bildverarbeitung: Gradientenflüsse, Level-Sets und Narrow Bands. Dissertation, University of Bonn, 2008. [ bib | http | .pdf | Abstract ]
[8] L. O. Schwen, U. Wolfram, H.-J. Wilke, and M. Rumpf. Determining effective elasticity parameters of microstructured materials. In 15th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields, pages 41-62. University of Ulm, 2008. [ bib | .pdf | Abstract ]

2007

[1] J. Han, B. Berkels, M. Droske, J. Hornegger, M. Rumpf, C. Schaller, J. Scorzin, and H. Urbach. Mumford-Shah model for one-to-one edge matching. IEEE Transactions on Image Processing, 16(11):2720-2732, November 2007. [ bib | DOI | .pdf ]
[2] L. Bar, B. Berkels, M. Rumpf, and G. Sapiro. A variational framework for simultaneous motion estimation and restoration of motion-blurred video. In 11th IEEE International Conference on Computer Vision. IEEE, 2007. [ bib | DOI | .pdf ]
[3] B. Berkels, A. Rätz, M. Rumpf, and A. Voigt. Identification of grain boundary contours at atomic scale. In First International Conference on Scale Space Methods and Variational Methods in Computer Vision, volume 4485 of Lecture Notes in Computer Science, pages 765-776. Springer, 2007. [ bib | DOI | .pdf | Abstract ]
[4] S. Conti, M. Lenz, and M. Rumpf. Modeling and simulation of magnetic shape-memory polymer composites. Journal of Mechanics and Physics of Solids, 55:1462-1486, 2007. [ bib | DOI | .pdf | Abstract ]
[5] J. Dohmen, N. Grunewald, F. Otto, and M. Rumpf. Mathematics - Key Technology for the Future, chapter Micro Structures in Thin Coating Layers: Micro Structure Evolution and Macroscopic Contact Angle. Springer, 2007. [ bib | .pdf ]
[6] M. Droske, C. Garbe, T. Preußer, M. Rumpf, and A. Telea. A phase field method for joint denoising, edge detection and motion estimation. SIAM Journal on Applied Mathematics, 68(3):599-618, 2007. [ bib | DOI | http | .pdf ]
[7] M. Droske and M. Rumpf. Multi scale joint segmentation and registration of image morphology. IEEE Transactions on Pattern Recognition and Machine Intelligence, 29(12):2181-2194, 2007. [ bib | .pdf ]
[8] M. Lenz. Modellierung und Simulation des effektiven Verhaltens von Grenzflächen in Metalllegierungen. Dissertation, University Bonn, 2007. [ bib | http | .pdf | Abstract ]
[9] O. Nemitz, M. B. Nielsen, M. Rumpf, and R. Whitaker. Narrow band methods for PDEs on very large implicit surfaces. In H. P. A. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek, and J. Weickert, editors, Vision, Modeling and Visualization, pages 171-180, 2007. [ bib | .pdf | Abstract ]
[10] O. Nemitz, M. Rumpf, T. Tasdizen, and R. Whitaker. Anisotropic curvature motion for structure enhancing smoothing of 3D MR angiography data. Journal of Mathematical Imaging and Vision, 27(3):217-229, 2007. [ bib | DOI | .pdf | Abstract ]
[11] T. Preusser, M. Rumpf, and L. O. Schwen. Finite element simulation of bone microstructures. In 14th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields, pages 52-66. University of Ulm, 2007. [ bib | .pdf | Abstract ]
[12] M. Teusner. Variationsmethoden höherer Ordnung zur Flächenbearbeitung (variational methods of higher order for surface processing). Diploma thesis, University Bonn, 2007. [ bib | .pdf ]

2006

[1] B. Berkels, M. Burger, M. Droske, O. Nemitz, and M. Rumpf. Cartoon extraction based on anisotropic image classification. In Vision, Modeling and Visualization, pages 293-300. AKA Publishing, 2006. [ bib | .pdf ]
[2] U. Clarenz, M. Droske, S. Henn, M. Rumpf, and K. Witsch. Computational methods for nonlinear image registration. In O. Scherzer, editor, Mathematical Models for Registration and Applications to Medical Imaging, Mathematics in Industry, volume 10, 2006. [ bib | .pdf | Abstract ]
[3] M. Droske, C. Garbe, T. Preußer, M. Rumpf, and A. Telea. A variational approach to joint denoising, edge detection and motion estimation. In 28th DAGM Symposium on Pattern Recognition, volume 4174 of Lecture Notes in Computer Science, pages 525-535. Springer, 2006. [ bib | .pdf ]
[4] M. Droske and W. Ring. A Mumford-Shah level-set approach for geometric image registration. SIAM Journal on Applied Mathematics, 66(6):2127-2148, 2006. [ bib | .pdf ]
[5] H. Garcke, M. Lenz, B. Niethammer, M. Rumpf, and U. Weikard. Multiple scales in phase separating systems with elastic misfit. In A. Mielke, editor, Analysis, Modeling and Simulation of Multiscale Problems. Springer, 2006. Final report of DFG priority program 1095. [ bib | http | .pdf ]
[6] H. Gonska, D. Kacsó, O. Nemitz, and P. Pitul. Piecewise linear interpolation revisited: BLaC-wavelets. Studia Univ. “BABES-BOLYAI”, Mathematica, 2006. [ bib | .pdf ]
[7] J. Han, B. Berkels, M. Rumpf, J. Hornegger, M. Droske, M. Fried, J. Scorzin, and C. Schaller. A variational framework for joint image registration, denoising and edge detection. In Bildverarbeitung für die Medizin, pages 246-250. Springer, 2006. [ bib | DOI | .pdf ]
[8] A. E. Lefohn, J. Kniss, R. Strzodka, S. Sengupta, and J. D. Owens. Glift: An abstraction for generic, efficient GPU data structures. Technical report, Oct 2006. ACM Transacitons on Graphics, 25 (1) 2006. [ bib | .pdf ]
[9] S. Noelle, W. Rosenbaum, and M. Rumpf. 3d adaptive central schemes: part I. algorithms for assembling the dual mesh. Applied Numerical Mathematics, 56(6):778-799, 2006. [ bib | .pdf ]

2005

[1] B. Berkels. Gradientenflussmethoden bei inversen Problemen in der Fernerkennung. Diploma thesis, University of Duisburg-Essen, 2005. [ bib | .pdf ]
[2] M. Droske. On Variational Problems and Gradient Flows in Image Processing. Dissertation, University Duisburg, 2005. [ bib | .pdf ]
[3] M. Droske, M. Meyer, M. Rumpf, and C. Schaller. An adaptive level set method for interactive segmentation of intracranial tumors. Neurosurgical Research, 27,Nr. 4:363-370, 2005. [ bib | .pdf ]
[4] D. Göddeke, R. Strzodka, and S. Turek. Accelerating double precision FEM simulations with GPUs. In Proceedings of ASIM 2005 - 18th Syposium on Simulation Technique, Sep. 2005. [ bib ]
[5] N. Litke, M. Droske, M. Rumpf, and P. Schröder. An image processing approach to surface matching. In Proc. of Eurographics Symposium on Geometry Processing, pages 207-216, 2005. [ bib | Abstract ]
[6] S. Noelle, W. Rosenbaum, and M. Rumpf. Analysis and numerics for conservation laws, chapter Multidimensional adaptive staggered grids, pages 479-493. Springer, Berlin, 2005. [ bib ]
[7] N. Olischläger. Optimale konforme Parametrisierungen von topologischen Sphären. Diploma thesis, University Duisburg, 2005. [ bib | .pdf ]
[8] M. Pach. Levelsetverfahren in der Shapeoptimierung. Diploma thesis, University Duisburg, 2005. [ bib | .pdf ]
[9] M. Rumpf and R. Strzodka. Graphics processor units: New prospects for parallel computing. In Numerical Solution of Partial Differential Equations on Parallel Computers, pages 89-132. Springer, 2005. [ bib ]
[10] L. O. Schwen. Numerical simulation of transport and diffusion in drainage media. Diploma thesis, Duisburg-Essen University, 2005. [ bib | .pdf | Abstract ]

2004

[1] P. Bastian, M. Droske, C. Engwer, R. Klöfkorn, T. Neubauer, M. Ohlberger, and M. Rumpf. Towards a unified framework for scientific computing. In R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. Xu, editors, 15th International Conference on Domain Decomposition Methods, Vol. 40, Lecture notes in Computational Science and Engineering, 2004. [ bib | .pdf | Abstract ]
[2] B. Berkels, U. Clarenz, S. Crewell, U. Löhnert, M. Rumpf, and C. Simmer. A physical temperatur profiling method using gradient flows. In Microwave Radiometry and Remote Sensing Applications, Feb. 2004, Rome, Italy, 2004. [ bib | .pdf | Abstract ]
[3] U. Clarenz. The Wulff-shape minimizes an anisotropic Willmore functional. Interfaces and Free Boundaries, 6(3):351-359, 2004. [ bib | .pdf | Abstract ]
[4] U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, and R. Rusu. A finite element method for surface restoration with smooth boundary conditions. Computer Aided Geometric Design, 21(5):427-445, 2004. [ bib | .pdf | Abstract ]
[5] U. Clarenz, U. Diewald, and M. Rumpf. Processing textured surfaces via anisotropic geometric diffusion. IEEE Transactions on Image Processing, 13(2):248-261, 2004. [ bib | .pdf | Abstract ]
[6] U. Clarenz, M. Griebel, M. Rumpf, A. Schweitzer, and A. Telea. A feature sensitive multiscale editing tool on surfaces. Visual Computer, 29(5):329-343, 2004. [ bib | .pdf | Abstract ]
[7] U. Clarenz, F. Haußer, M. Rumpf, A. Voigt, and U. Weikard. On level set formulations for anisotropic mean curvature flow and surface diffusion. In A. Voigt, editor, Multiscale Modeling in Epitaxial Growth, volume 149 of International Series of Numerical Mathematics, pages 227-238. Birkhäuser, 2004. [ bib | .pdf | Abstract ]
[8] U. Clarenz, N. Litke, and M. Rumpf. Axioms and variational problems in surface parameterization. Comput. Aided Geom. Design, 21(8):727-749, 2004. [ bib | .pdf | Abstract ]
[9] U. Clarenz and H. von der Mosel. On surfaces of prescribed f-mean curvature. Pacific Journal of Mathematics, 213(1):15-36, 2004. [ bib | .pdf | Abstract ]
[10] U. Clarenz, M. Rumpf, and A. Telea. Robust feature detection and local classification for surfaces based on moment analysis. IEEE Transactions on Visualization and Computer Graphics, 10(5):516-524, 2004. [ bib | .pdf | Abstract ]
[11] U. Clarenz, M. Rumpf, and A. Telea. Fairing of point based surfaces. In Computer Graphics International, pages 600-603, 2004. [ bib | .pdf | Abstract ]
[12] U. Clarenz, M. Rumpf, and A. Telea. Finite elements on point based surfaces. In Eurographics Symposium of Point Based Graphics, 2004. [ bib | Abstract ]
[13] U. Clarenz, M. Rumpf, and A. Telea. Surface processing methods for point sets using finite elements. Computers & Graphics, 28(6):851-868, 2004. [ bib ]
[14] M. Droske and M. Rumpf. A variational approach to non-rigid morphological registration. SIAM Journal on Applied Mathematics, 64(2):668-687, 2004. [ bib | .pdf | Abstract ]
[15] M. Droske and M. Rumpf. A level set formulation for Willmore flow. Interfaces and Free Boundaries, 6(3):361-378, 2004. [ bib | .pdf | Abstract ]
[16] M. Griebel, T. Preußer, M. Rumpf, A. Schweitzer, and A. Telea. Flow field clustering via algebraic multigrid. In Visualization. IEEE CS Press, 2004. [ bib | .pdf | Abstract ]
[17] M. Hesse, M. Rumpf, and K.-T. Sturm. Discretization and convergence for harmonic maps into trees. Calculus of Variations, 21:113-136, 2004. [ bib | .pdf | Abstract ]
[18] F. Liehr. Ein effizienter Löser für elastische Mikrostrukturen. Diploma thesis, University Duisburg, 2004. [ bib ]
[19] R. Strzodka. Hardware Efficient PDE Solvers in Quantized Image Processing. Dissertation, University Duisburg, 2004. [ bib | .pdf | Abstract ]
[20] R. Strzodka, M. Droske, and M. Rumpf. Image registration by a regularized gradient flow - a streaming implementation in DX9 graphics hardware. Computing, 73(4):373-389, 2004. [ bib | .pdf | Abstract ]
[21] R. Strzodka and C. Garbe. Real-time motion estimation and visualization on graphics cards. In Proceedings Visualization Conference 2004, pages 545-552, 2004. [ bib | .pdf | Abstract ]
[22] R. Strzodka and A. Telea. Generalized distance transforms and skeletons in graphics hardware. In Proceedings of EG/IEEE TCVG Symposium on Visualization VisSym '04, pages 221-230, 2004. [ bib | Abstract ]

2003

[1] U. Clarenz. A stability criterion for extremals of elliptic parametric functionals. Pacific Journal of Mathematics, 208(2):231-242, 2003. [ bib | .pdf | Abstract ]
[2] U. Clarenz, U. Diewald, and M. Rumpf. A multiscale fairing method for textured surfaces. In H.-C. Hege and K. Polthier, editors, Visualization and Mathematics III, pages 245-260, Heidelberg, 2003. Springer-Verlag. [ bib | Abstract ]
[3] U. Clarenz, G. Dziuk, and M. Rumpf. On generalized mean curvature flow in surface processing. In H. Karcher and S. Hildebrandt, editors, Geometric analysis and nonlinear partial differential equations, pages 217-248. Springer, 2003. [ bib | .pdf | Abstract ]
[4] M. Droske, M. Rumpf, and C. Schaller. Non-rigid morphological registration and its practical issues. In IEEE International Conference on Image Processing, pages II: 699-702, 2003. [ bib | .pdf | Abstract ]
[5] H. Garcke, S. Maier-Paape, and U. Weikard. Spinodal decomposition in the presence of elastic interactions, 2003. [ bib | .pdf ]
[6] H. Garcke, B. Niethammer, M. Rumpf, and U. Weikard. Transient coarsening behaviour in the Cahn-Hilliard model. Acta Materialia, 51(10):2823-2830, 2003. [ bib | .pdf | Abstract ]
[7] B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and G. Siebert, K. Multiresolution visualization of higher order adaptive finite element simulations. Computing, 3:181-204, 2003. [ bib ]
[8] K. Mikula, T. Preußer, and M. Rumpf. Morphological image sequence processing. Computing and Visualization in Science, 6(4):197-209, 2003. [ bib | .pdf | Abstract ]
[9] T. Preußer and M. Rumpf. Extracting motion velocities from 3D image sequences. In SPIE Conference on Visualization and Data Analysis, 2003. [ bib | .pdf | Abstract ]
[10] T. Preusser. Anisotropic geometric diffusion in image and image-sequence processing. Dissertation, University Duisburg, 2003. [ bib | .pdf | Abstract ]
[11] R. Strzodka, M. Droske, and M. Rumpf. Fast image registration in DX9 graphics hardware. Journal of Medical Informatics and Technologies, 6:43-49, Nov 2003. [ bib | .pdf | Abstract ]
[12] R. Strzodka, M. Droske, and M. Rumpf. Gradient flow registration - a streaming implementation in DX9 graphics hardware. Technical report, research center caesar, Jan 2003. [ bib | .pdf ]
[13] R. Strzodka, I. Ihrke, and M. Magnor. A graphics hardware implementation of the generalized hough transform for fast object recognition, scale, and 3d pose detection. In International Conference on Image Analysis and Processing (ICIAP 2003), pages 188-193, 2003. [ bib | Abstract ]
[14] O. Wilderotter. An adaptive numerical method for the Richards equation with root growth. Plant and Soil, 251(2):255-267, 2003. [ bib | .pdf | Abstract ]

2002

[1] J. Becker, G. Grün, and M. Rumpf. On space-time-adaptive convergent finite-element schemes for a general class of lubrication -type equations. In World Congress on Computational Mechanics, 2002. [ bib | Abstract ]
[2] J. Becker, G. Grün, M. Lenz, and M. Rumpf. Numerical methods for fourth order nonlinear degenerate diffusion problems. Applications of Mathematics, 47(6):517-543, 2002. [ bib | DOI | http | Abstract ]
[3] U. Clarenz. Enclosure theorems for extremals of elliptic parametric functionals. Calculus of Variations, 15:313-324, 2002. [ bib | .pdf | Abstract ]
[4] U. Clarenz, M. Droske, and M. Rumpf. Towards fast non-rigid registration. In Inverse Problems, Image Analysis and Medical Imaging, AMS Special Session Interaction of Inverse Problems and Image Analysis, volume 313, pages 67-84. AMS, 2002. [ bib | .pdf | Abstract ]
[5] U. Clarenz, S. Henn, and K. Rumpf, M. Witsch. Relations between optimization and gradient flow methods with applications to image registration. In GAMM Seminar on Multigrid and Related Methods for Optimisation Problems, pages 11-30, 2002. [ bib | .pdf | Abstract ]
[6] U. Clarenz and H. von der Mosel. Isoperimetric inequalities for parametric variational problems. Ann. I. H. Poincaré - AN, 19(5):617-629, 2002. [ bib | .pdf | Abstract ]
[7] U. Diewald, S. Morigi, and M. Rumpf. A cascadic geometric filtering approach to subdivision. Computer Aided Geometric Design, 19:675-694, 2002. [ bib | .pdf | Abstract ]
[8] G. Grün, M. Lenz, and M. Rumpf. A finite volume scheme for surfactant driven thin film flow. In R. Herbin and D. Kröner, editors, Finite Volumes for Complex Applications III, pages 567-574. Hermes Penton Sciences, 2002. [ bib | .pdf | Abstract ]
[9] S. Klupsch, M. Ernst, S. A. Huss, M. Rumpf, and R. Strzodka. Real time image processing based on reconfigurablhimoe hardware acceleration. In Heterogeneous reconfigurable Systems on Chip, 2002. [ bib | .pdf | Abstract ]
[10] M. Lenz. Finite Volumen Methoden für degenerierte parabolische Systeme - Ausbreitung eines Surfactant auf einem dünnen Flüssigkeitsfilm. Diploma thesis, University Bonn, 2002. [ bib | .pdf | Abstract ]
[11] T. Preußer and M. Rumpf. A level set method for anisotropic geometric diffusion in 3D image processing. SIAM Journal on Applied Mathematics, 62(5):1772-1793, 2002. [ bib | .pdf | Abstract ]
[12] M. Rumpf and A. Telea. A continuous skeletonization method based on level sets. In Eurographics/IEEE TCVG Symposium on Visualization, pages 151-157, 2002. [ bib | Abstract ]
[13] R. Strzodka. Virtual 16 bit precise operations on RGBA8 textures. In Vision Modeling and Visualisation 2002, pages 171-178, 2002. [ bib | .pdf | Abstract ]
[14] R. Strzodka. Image processing on the XPP. http://numod.ins.uni-bonn.de/research/papers/public/St02XPP.pdf, Aug. 2002. Evaluation study. [ bib | .pdf ]

2001

[1] D. Bürkle, T. Preußer, and M. Rumpf. Transport and anisotropic diffusion in time-dependent flow visualization. In Visualization, 2001. [ bib | .pdf | Abstract ]
[2] U. Diewald, S. Morigi, and M. Rumpf. On geometric evolution and cascadic multigrid in subdivision. In T. Ertl, B. Girod, G. Greiner, H. Niemann, and H.-P. Seidel, editors, Vision, Modeling and Visualization, pages 67-75, 2001. [ bib | .pdf | Abstract ]
[3] U. Diewald, T. Preußer, M. Rumpf, and R. Strzodka. Diffusion models and their accelerated solution in computer vision applications. Acta Mathematica Universitatis Comenianae (AMUC), 70(1):15-31, 2001. [ bib | Abstract ]
[4] M. Droske, B. Meyer, M. Rumpf, and C. Schaller. An adaptive level set method for medical image segmentation. In R. Leahy and M. Insana, editors, Annual Symposium on Information Processing in Medical Imaging. Springer, Lecture Notes Computer Science, 2001. [ bib | .pdf | Abstract ]
[5] H. Garcke, T. Preußer, M. Rumpf, A. Telea, U. Weikard, and J. van Wijk. A phase field model for continuous clustering on vector fields. IEEE Transactions on Visualization and Computer Graphics, 7:230-241, 2001. [ bib | .pdf | Abstract ]
[6] H. Garcke, M. Rumpf, and U. Weikard. The Cahn-Hilliard equation with elasticity, finite element approximation and qualitative analysis. Interfaces and Free Boundaries, 3(1):101-118, 2001. [ bib | .pdf | Abstract ]
[7] G. Grün and M. Rumpf. Simulation of singularities and instabilities arising in thin film flow. European Journal of Applied Mathematics, 12:293-320, 2001. [ bib | Abstract ]
[8] K. Mikula, T. Preußer, M. Rumpf, and F. Sgallari. On anisotropic geometric diffusion in 3D image processing and image sequence analysis. In M. Kirkilionis, S. Krömker, R. Rannacher, and F. Tomi, editors, Trends in Nonlinear Analysis, 2001. [ bib | .pdf | Abstract ]
[9] M. Rumpf and R. Strzodka. Nonlinear diffusion in graphics hardware. In Eurographics/IEEE TCVG Symposium on Visualization, pages 75-84, 2001. [ bib | Abstract ]
[10] M. Rumpf and R. Strzodka. Using graphics cards for quantized fem computations. In VIIP Conference on Visualization and Image Processing, 2001. [ bib | .pdf | Abstract ]
[11] R. Strzodka and M. Rumpf. Level set segmentation in graphics hardware. In IEEE International Conference on Image Processing, pages 1103-1106, 2001. [ bib | .pdf | Abstract ]

2000

[1] J. Becker, D. Bürkle, R.-T. Happe, T. Preußer, M. Rumpf, M. Spielberg, and R. Strzodka. Asspects on data analysis and visualization for complex dynamical systems. In B. Fiedler, editor, Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, chapter Aspects on Data Analysis and Visualization for Complex Dynamical Systems. Springer, 2000. [ bib | Abstract ]
[2] J. Becker, T. Preußer, and M. Rumpf. PDE methods in flow simulation post processing. Computing and Visualization in Science, 3(3):159-167, 2000. [ bib | .pdf | Abstract ]
[3] U. Clarenz, U. Diewald, and M. Rumpf. Nonlinear anisotropic diffusion in surface processing. In B. H. T. Ertl and A. Varshney, editors, Visualization, pages 397-405, 2000. [ bib | .pdf | Abstract ]
[4] M. Dellnitz, O. Junge, M. Rumpf, and R. Strzodka. The computation of an unstable invariant set inside a cylinder containing a knotted flow. In B. Fiedler, K. Gröger, and J. Sprekels, editors, Equadiff, pages 1015-1020. World Scientific, 2000. [ bib | Abstract ]
[5] U. Diewald, T. Preußer, and M. Rumpf. Anisotropic diffusion in vector field visualization on euclidean domains and surfaces. IEEE Transactions on Visualization and Computer Graphics, 6(2):139-149, 2000. [ bib | .pdf | Abstract ]
[6] U. Diewald and M. Rumpf. Visualization of principal curvature directions by anisotropic diffusion. In B. Girod, G. Greiner, H. Niemann, and H.-P. Seidel, editors, Vision, Modeling and Visualization, pages 293-301, 2000. [ bib | .pdf | Abstract ]
[7] M. Droske, T. Preußer, and M. Rumpf. A multilevel segmentation method. In B. Girod, G. Greiner, H. Niemann, and H.-P. Seidel, editors, Vision, Modeling and Visualization, pages 327-336, 2000. [ bib | .pdf | Abstract ]
[8] H. Garcke, T. Preußer, M. Rumpf, A. Telea, U. Weikard, and J. Van Wijk. A continuous clustering method for vector fields. In Visualization, pages 351-358. IEEE Computer Society, 2000. [ bib | .pdf | Abstract ]
[9] T. Gerstner, M. Rumpf, and U. Weikard. Error indicators for multilevel visualization and computing on nested grids. Computers & Graphics, 24(3):363-373, 2000. [ bib | DOI | http | Abstract ]
[10] G. Grün and M. Rumpf. Nonnegativity preserving convergent schemes for the thin film equation. Numerische Mathematik, 87:113-152, 2000. [ bib | .pdf | Abstract ]
[11] S. Noelle, W. Rosenbaum, and M. Rumpf. An adaptive staggered grid scheme for conservation laws. In H. Freistühler and G. Warnecke, editors, Hyperbolic Problems: Theory, Numerics, Applications. Eighth International Conference, volume 141 of International Series of Numerical Mathematics, pages 775-784, Basel, 2000. Birkhäuser. [ bib | .pdf ]
[12] T. Preußer and M. Rumpf. An adaptive finite element method for large scale image processing. Journal of Visual Communication and Image Representation, 11(2):183-195, 2000. [ bib | DOI | .pdf | Abstract ]

1999

[1] D. Bürkle, M. Dellnitz, O. Junge, M. Rumpf, and M. Spielberg. Visualizing complicated dynamics. In Late Breaking Hot Topic Visualization 1999 Conference, pages 33-36, 1999. [ bib | .pdf ]
[2] T. Geßner, B. Haasdonk, R. Kende, M. Lenz, R. Neubauer, M. Metscher, M. Ohlberger, W. Rosenbaum, M. Rumpf, R. Schwörer, M. Spielberg, and U. Weikard. A procedural interface to hierarchical grids. Technical report, SFB 256, University Bonn, 1999. [ bib | .html | .pdf | Abstract ]
[3] T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction based on tetrahedral bisection. In International Workshop on Volume Graphics. Springer, 1999. [ bib | .pdf ]
[4] G. Grün and M. Rumpf. Entropy consistent finite volume schemes for the thin film equation. In D. H. R. Vilsmeier, F. Benkhaldoun, editor, Finite Volumes for Complex Applications II. Hermes Science Publications, Paris, 1999. [ bib ]
[5] M. Ohlberger and M. Rumpf. Adaptive projection operators in multiresolutional scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 5-1(4):74-94, 1999. [ bib | .pdf ]
[6] T. Preußer and M. Rumpf. Anisotropic nonlinear diffusion in flow visualization. In Visualization, 1999. [ bib | .pdf | Abstract ]
[7] M. Rumpf. Recent numerical methods - a challenge for data analysis and visualization. Future Generation Computer Systems, 15(1):43-58, 1999. [ bib ]

1998

[1] A. Backes, A. Dahr, and M. Rumpf. Interactive visualization of particle systems. In Computer Graphics International, pages 88-95. IEEE Computer Society, 1998. [ bib ]
[2] J. Becker and M. Rumpf. Visualization of time-dependent velocity fields by texture transport. In Eurographics Scientific Visualization Workshop '98. Springer, 1998. [ bib ]
[3] W. Dörfler and M. Rumpf. An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation. Mathematics of Computation, 67(224):1361-1382, 1998. [ bib ]
[4] M. Metscher and M. Rumpf. Optimal searching on hierarchical grids based on local coordinates. In GAMM Seminar on Concepts of Numerical Software. Vieweg, 1998. [ bib ]

1997

[1] M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf. Exploring invariant sets and invariant measures. Chaos, 7(2):221-228, 1997. [ bib | .pdf ]
[2] M. Flucher and M. Rumpf. Bernoulli's free boundary problem, qualitative theory and numerical approximation. Journal für die reine und angewandte Mathematik, 486:165-204, 1997. [ bib ]
[3] R. Neubauer, M. Ohlberger, M. Rumpf, and R. Schwörer. Efficient visualization of large scale data on hierarchical meshes. In W. Lefer and M. Grave, editors, Visualization in Scientific Computing, pages 125-138. Springer, 1997. [ bib | .pdf ]
[4] M. Ohlberger and M. Rumpf. Hierarchical and adaptive visualization on nested grids. Computing, 59(4):365-385, 1997. [ bib ]
[5] M. Rumpf. The equilibrium state of an elastic solid in an incompressible fluid flow. In J. G. Heywood et al., editors, Theory of the Navier-Stokes Equations, volume 47. World Scientific Publisher, 1997. [ bib ]

1996

[1] R. T. Happe and M. Rumpf. Characterizing global features of simulation data by selected local icons. In Eurographics Workshop on Virtual environments and scientific visualization '96, pages 234-242. Springer, 1996. [ bib ]
[2] M. Rumpf. A variational approach to optimal meshes. Numerische Mathematik, 72(4):523-540, 1996. [ bib ]
[3] M. Rumpf, A. Schmidt, and K. Siebert. Functions defining arbitrary meshes, a flexible interface between numerical data and visualization routines. Comput. Graph. Forum, 15(2):129-141, 1996. [ bib | .pdf ]

≤ 1995

[1] R. Kleinrensing and M. Rumpf. Asynchronous local mesh adaption for domain decomposition methods. Technical Report Preprint 5, Mathematische Fakultät, Freiburg, 1995. [ bib ]
[2] K. Polthier and M. Rumpf. A concept for time-dependent processes. In M. Göbel, H. Müller, and B. Urban, editors, Scientific Visualization. Springer, 1995. [ bib | .pdf ]
[3] M. Rumpf, A. Schmidt, and K. Siebert. On a unified visualization approach for data from advanced numerical methods. In R. Scateni, J. Van Wijk, and P. Zanarini, editors, Visualization in Scientific Computing, pages 35-44. Springer, 1995. [ bib ]
[4] M. Rumpf and B. Schupp. Visualization of parallel data based on procedural access. In Visualization and Mathematics, pages 197-ff. Springer, 1995. [ bib ]
[5] M. Rumpf. Adapting meshes by deformation, numerical examples and applications. In GAMM Seminar on Fast Solvers for Flow Problems. Vieweg, 1994. [ bib ]
[6] M. Rumpf and M. Wierse. Visualization concepts for adaptive nonstationary flow. In DFG Workshop on Visualisierung in Paderborn. World Scientific Publisher, 1994. [ bib ]
[7] M. Geiben and M. Rumpf. Visualization of finite elements and tools for numerical analysis. In F. Post and A. H. Hin, editors, Advances in Scientific Visualization, pages 1-23. Springer, 1993. [ bib ]
[8] J. Nakielski and M. Rumpf. Growth in apical meristems of plants, visualization tools and growth tensor methods. Technical Report 11, SFB 256, Bonn, 1992. [ bib ]
[9] M. Rumpf and A. Wierse. GRAPE, Eine interaktive Umgebung für Visualisierung und Numerik. Informatik, Forschung und Entwicklung, 7:145-151, 1992. [ bib ]
[10] K. Polthier and M. Rumpf. WYSIWYO in differential geometry (what you see is where you operate). In Eurographics Workshop on Computer Graphics and Mathematics, Genua, 1991. [ bib ]