author = {Becker, J. and Gr{\"{u}}n, G. and Rumpf, M.},
  title = {On space-time-adaptive convergent finite-element schemes for a general
	class of lubrication -type equations},
  booktitle = {World Congress on Computational Mechanics},
  year = {2002},
  abstract = {In this contribution, we summarize the key ideas of recently developed
	finite element schemes for fourth-order degenerate parabolic equations
	like the thin film equation. Our approach is inspired both by the
	physics to be modeled and by analytical methods used in the theory
	of these partial differential equations. As a consequence, the scheme
	preserves non-negativity or positivity of solutions in a natural
	way, it is convergent in all the physically relevant space dimensions,
	and moving contact lines are tracked efficiently. In a second part,
	we present some characteristic numerical simulations for thin film
	flow. We consider wetting solely induced by capillary forces and
	dewetting caused by instabilities due to long-range intermolecular
	forces. By dimensionalized numerical experiments, we investigate
	the stability of receding contact lines during dewetting processes.}