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Some Key-Tasks in Image Processing

• Denoising

• Segmentation

• Matching

• Visualization



Denoising by anisotropic diffusion



Segmentation by the level-set method



Matching by a gradient-flow method
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Visualization of a vector field
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Data-Flow in One Iteration

Step n+1Step n
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Data Processing-Bandwidth
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Current SD and RD RAM-Types for MPUs
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Data Processing-Bandwidth

total bandwidth - totalMaximize b  :Task

Processor

inputb readb writeb outputb

{ }outputwritereadinputtotal ,,,min bandwidth -total bbbbb =

1+nXα

IN OUT
( )

C
nX

≤−αββ

total bandwidth - totalMaximize 2.            
busypipeline wholetheKeep1.

b
 :Tasks

pipeline

m
em

ory

m
em

ory



Comparison XPP-FPGA 

XPP FPGA

+ fast reconfigurability

+ implicit synchronization

+ higher level programming

+ easier debugging

+ low level optimization

+ large local memory
with variable access

+ many IO channels



Overview

• Introduction
• Data-Flow & Architectures

• Implementations on the XPP
• Performance & Configurations

• Conclusions



Implementations on the XPP
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Boundry Conditions
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Data Travers

If local memory is too small to cache all neighbour pixels,
traverse the data in smaller subvolumes.

Costs: multiple transfer of border elements.



Implemented Filters in 2D and 3D
in a 8+4x8 XPP array
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Performance

stencil
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XPP 12x8

stencil
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stencil
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⇒ real-time for 2d applications
⇒ interactivity for 3d applications



Configuration for an explicit solver
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for each timestep n {
configure the array for weight computation
compute weights 

configure the array for data computation
apply weights to data

}   



Configuration for an implicit solver
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for each timestep n {
configure the array for weight computation
compute weights

configure the array for data computation
for each iteration k {
apply weights to data
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}   



Solving the weight transmission problem

1. Instead of pre-computing 27 weights
for a 3x3x3 stencil, pre-compute only a smaller
vector of intermediate results from which all
the weights can be quickly evaluated               .

2. Increase the number of available IO channels by
shifting the task of address generation and memory
access to a processor outside of the XPP array,
such that all the available 8 IO channels can be used
for data input or output.

3. Increase the overall number of IO channels, such that
applications will be able to access more than 6 
intermediate results simultaneously.
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Solving the weight transmission problem
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Solving the weight transmission problem
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Conclusions

• A wide range of image processing application could 
be accelerated.

• The test implementations at estimated 100MHz 
suggest a performance gain of 10-20 over common 
PC solutions in full-grown applications.

• In our experience the XPP wins over other 
architectures such as GPUs or FPGAs either in 
speed or programmability.

• Finally, improved memory availability and IO access
would further facilitate and accelerate image 
processing on the XPP.


