
PACT
Munich, Germany

August 2002

Image Image ProcessingProcessing
on on thethe

eXtremeeXtreme ProcessingProcessing PlatformPlatform®®

Robert Strzodka
Numerical Analysis and Scientific Computing
University of Duisburg
http://www.numerik.math.uni-duisburg.de
strzodka@math.uni-duisburg.de

Overview

• Introduction
• Data-Flow & Architectures

• Implementations on the XPP
• Performance & Configurations

• Conclusions

Some Key-Tasks in Image Processing

• Denoising

• Segmentation

• Matching

• Visualization

Denoising by anisotropic diffusion

Segmentation by the level-set method

Matching by a gradient-flow method

deformed
image

original
image

matching
error

matching
result

Visualization of a vector field

Initial image Step 1 Step 2 Step 3

Step 4 Step 5 Step 7 Step 10

Data-Flow in One Iteration

Step n+1Step n

()()
C

nXF
≤−αββ

∑
≤−

−
C

nXW
αββ

βαβα
:

,

1

Data Processing-Bandwidth

Processor

inputb readb writeb outputb

{ }outputwritereadinputtotal ,,,min bandwidth -total bbbbb =

1+nXα

IN OUT
()

C
nX

≤−αββ

()()
C

nXF
≤−αββ

m
em

ory

m
em

ory

total bandwidth - totalMaximize b :Task

Current SD and RD RAM-Types for MPUs

1,06

6

2,13

6

1,60

7

3,20

7

24

1
0,00

5,00

10,00

15,00

20,00

25,00

PC133 DDR266 PC800 2xPC800 MPU 2GHz

Bandwidth in GB/s Latency (RAS cycle time) in 10ns

Data Processing-Bandwidth

total bandwidth - totalMaximize b :Task

Processor

inputb readb writeb outputb

{ }outputwritereadinputtotal ,,,min bandwidth -total bbbbb =

1+nXα

IN OUT
()

C
nX

≤−αββ

total bandwidth - totalMaximize 2.
busypipeline wholetheKeep1.

b
 :Tasks

pipeline

m
em

ory

m
em

ory

Comparison XPP-FPGA

XPP FPGA

+ fast reconfigurability

+ implicit synchronization

+ higher level programming

+ easier debugging

+ low level optimization

+ large local memory
with variable access

+ many IO channels

Overview

• Introduction
• Data-Flow & Architectures

• Implementations on the XPP
• Performance & Configurations

• Conclusions

Implementations on the XPP

cycleclock each in output andinput one :i.e.
bandwidth,-totalMaximal :Aim

exram

exram

local
computation

()()
C

nXF
≤−αββ

dual
ported
access
to
exram

fifo
caches
for
neigh-
bor
pixels

address
generator

Boundry Conditions

natural
boundry condition

constant
boundry condition

Data Travers

If local memory is too small to cache all neighbour pixels,
traverse the data in smaller subvolumes.

Costs: multiple transfer of border elements.

Implemented Filters in 2D and 3D
in a 8+4x8 XPP array

()() ∑
≤−

−≤−
+ ==

C

n
C

nn XWXFX
αββ

βαβααββα
:

,
1 :

2D Stencil 3D Stencil

3x3

5x5

7x7

3x3x3

5x5x5
in array
10+4x15

Performance

stencil
7x7

XPP 12x8

stencil
3x3x3

XPP 12x8

stencil
5x5x5

XPP 14x15
operations
per clock
cycle

49 MAC 27 MAC 125 MAC

output pixel
per clock
cycle

1
for 2^9 fifos

0.73
for 2^9 fifos

0.58

number of
passes at
100MHz

256^2 data
1525

256^3 data
4.373

256^3 data
3.454

⇒ real-time for 2d applications
⇒ interactivity for 3d applications

Configuration for an explicit solver

()()
C

nn XGW
≤−

=
αββγγα ,

C≤γ each for

∑
≤−

−
+ =

C

nnn XWX
αββ

βαβαα
:

,
1

for each timestep n {
configure the array for weight computation
compute weights

configure the array for data computation
apply weights to data

}

Configuration for an implicit solver

∑
≤−

+
−

++ =
C

knnkn XWX
αββ

βαβαα
:

,1
,

1,1

()()
C

nn XGW
≤−

=
αββγγα ,

C≤γ each for

for each timestep n {
configure the array for weight computation
compute weights

configure the array for data computation
for each iteration k {
apply weights to data

}
}

Solving the weight transmission problem

1. Instead of pre-computing 27 weights
for a 3x3x3 stencil, pre-compute only a smaller
vector of intermediate results from which all
the weights can be quickly evaluated .

2. Increase the number of available IO channels by
shifting the task of address generation and memory
access to a processor outside of the XPP array,
such that all the available 8 IO channels can be used
for data input or output.

3. Increase the overall number of IO channels, such that
applications will be able to access more than 6
intermediate results simultaneously.

1,, ≤γγαW

()αγα wW r
,

αwr

Solving the weight transmission problem

cycleclock each in output andinput one :i.e.
bandwidth,-totalMaximal :Aim

exram

exram

local
computation

dual
ported
access
to
exram

fifo
caches
for
neigh-
bor
pixels

address
generator

()
() ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

≤

≤−

C

C
n

W

X
F

γγα

αββ

,

Solving the weight transmission problem

cycleclock each in output andinput one :i.e.
bandwidth,-totalMaximal :Aim

dual ported
access to exram

fifo
caches
for
neigh-
bor
pixels

address
generator

local
computation

()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≤−

α

αββ

w

X
F C

n

r

External RAM

Overview

• Introduction
• Data-Flow & Architectures

• Implementations on the XPP
• Performance & Configurations

• Conclusions

Conclusions

• A wide range of image processing application could
be accelerated.

• The test implementations at estimated 100MHz
suggest a performance gain of 10-20 over common
PC solutions in full-grown applications.

• In our experience the XPP wins over other
architectures such as GPUs or FPGAs either in
speed or programmability.

• Finally, improved memory availability and IO access
would further facilitate and accelerate image
processing on the XPP.

