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Abstract. Concepts from elasticity are applied to analyze modes of vari-
ation on shapes in two and three dimensions. This approach represents
a physically motivated alternative to shape statistics on a Riemannian
shape space, and it robustly treats strong nonlinear geometric variations
of the input shapes.
To compute a shape average, all input shapes are elastically deformed
into the same configuration. That configuration which minimizes the to-
tal elastic deformation energy is defined as the average shape. Each of
the deformations from one of the shapes onto the shape average induces
a boundary stress. Small amplitude stimulation of these stresses leads
to displacements which reflect the impact of every single input shape
on the average. To extract the dominant modes of variation, a PCA is
performed on this set of displacements.
To make the approach computationally tractable, a relaxed formulation
is proposed, and sharp contours are approximated via phase fields. For
the spatial discretization of the resulting model, piecewise multilinear
finite elements are applied. Applications in 2D and in 3D demonstrate
the qualitative properties of the presented approach.

1 Introduction

This paper is concerned with the notion of shape averages and principal modes of
shape variation based on concepts from continuum mechanics, namely nonlinear
and linearized elasticity. As shapes we consider object contours, encoded as edge
sets in images. Compared to a classical principal component analysis in a vector
space, where an average and a covariance tensor can be computed directly on
the linear space itself, in the case of shapes we are dealing with highly nonlinear
geometric variations. Hence, for the zero moment analysis – i. e. the definition of
a suitable shape average – the total elastic energy stored in a set of deformations
from the input shapes onto a single image shape is minimized. At the energy
minimum the corresponding image shape is defined as the shape average.
Concerning a first moment analysis, we propose a physically sound linearization
of shape variations which allows to define a covariance tensor. Each deformation
from an input onto the average shape induces stresses on the shape average,
which can be regarded as the imprint of the input shape. Modulating these



stresses leads to displacements on the shape average, where the mapping from
stresses to displacements is linear and well-defined. Each of these displacements
can be regarded as a linearization of the usually nonlinear elastic deformation
from one of the image shapes onto the shape average. Thus, a covariance tensor
can be computed based on these displacements of the shape average. It linearly
encodes the modes of variation of the shape average induced by the set of input
shapes, even though the underlying deformations are usually large and nonlin-
ear. Finally, we perform a principal component analysis based on this covariance
tensor, which allows to identify the dominant modes of variation of the input
shapes.
Our model is related to the physical interpretation of the arithmetic mean and
the covariance tensor for n points x1, · · · , xn in IRd. Indeed, the arithmetic mean
x ∈ IRd minimizes

∑
i=1,...,n αd(x, xi)2, where d(x, xi) is the distance between

x and xi. Due to Hooke’s law, the stored elastic energy αd(x, xi)2 in the spring
connecting xi and x is proportional to the squared distance. Hence, the arith-
metic mean minimizes the total elastic energy of the system of connected springs.
Likewise, the covariance tensor (〈xi−x, xj −x〉) can – up to the spring constant
– be identified with the covariance tensor (〈σi, σj〉) of the forces σi pulling at
the mean x.
At first, shape analysis was mainly based on correspondences between landmark
positions on different shapes as in the influential work by Cootes et al. [1]. Princi-
pal component analysis (PCA) is a classical, by definition linear statistical tool.
Chalmond and Girard [2] have proposed a PCA which incorporates also truely
nonlinear geometric transformations. A survey on the potential of shape analysis
in brain imaging is given by Faugeras and coworkers in [3]. Another important
application concerns ready-made clothing, where it would be favorable to know
the shape of the average human body and its principal modes of variation to
design clothes which sufficiently fit as many people as possible.
Conceptually, correlations of shapes have been studied on the basis of a gen-
eral framework of a space of shapes and its intrinsic structure. The notion of
shape space was introduced by Kendall [4] already in 1984. Charpiat et al. [5]
discuss shape averaging and shape statistics based on the Hausdorff distance
of sets. Statistics on signed distance functions was also studied by Leventon
et al. [6], whereas Dambreville et al. [7] used shape statistics based on charac-
teristic functions to define a robust shape prior in image segmentation. Kernel
density estimation in feature space was introduced by Cremers et al. [8] to incor-
porate the probability of 2D silhouettes of 3D objects in image segmentation. An
overview on related kernel density methods is given by Rathi et al. [9]. Mémoli
and Sapiro [10] have investigated the Gromov–Hausdorff distance as a global
measure for the lack of isometry in shape analysis. In contrast to such a global
measure for the defect from an isometry, the nonlinear elastic energy functional
involved in our approach measures this defect locally, and locally isometric de-
formations indeed minimize the corresponding local functional.
Understanding shape space as an infinite-dimensional Riemannian manifold has
been studied extensively by Miller et al. [11,12]. Fuchs et al. [13] proposed a vis-
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Fig. 1. Sketch of elastic shape averaging. The input shapes Si (i = 1, . . . , 4)
are mapped onto a shape S via elastic deformations φi. The shape S which
minimizes the elastic deformation energy is denoted the shape average.

coelastic notion of the distance between shapes S given as boundaries of phys-
ical objects O. The elasticity paradigm for shape analysis on which our ap-
proach is founded differs significantly from these metric approaches to shape
space (cf. Sect. 4 for a detailed discussion of the conceptual difference).
In this paper, shapes are represented implicitly via a diffused phase field de-
scription. This in particular enables a robust and flexible application in two and
three dimensions.

2 Zero Moment Analysis

In this section we briefly recall an elastic approach to shape averaging already
presented in [14]. We consider shapes Si as the boundaries ∂Oi of sufficiently
regular objects Oi.

Given n shapes, S1, . . . ,Sn, we seek an average shape S that reflects the geo-
metric characteristics of the given shapes in a physical manner. For that purpose
we assume that the average shape S can be described as a deformed configura-
tion of the input shapes, i. e. there are deformations φi : Oi → IRd, i = 1, . . . , n,
with S = φi(Si) (see Fig. 1). A natural choice for the shape average S is that
particular shape which minimizes the total accumulated deformation energy of
all deformations, E [S, (φi)i=1,...,n] = 1

n

∑n
i=1W[Oi, φi], where W[Oi, φi] repre-

sents the stored deformation energy of the deformation φi.
To ensure existence of a minimizing shape S, we add a regularizing prior L[S] to
the energy. Here, we consider the Hd−1-measure of S, i. e. L[S] =

∫
S da, and the

shape average S is defined as a minimizer of the energy E [S, (φi)i=1,...,n]+µL[S].
As deformation energyW[Oi, φi] we will employ a nonlinear, hyperelastic energy
W[O, φ] =

∫
OW (Dφ) dx , whose integrand can be rewritten as a function of only

the three invariants W (Dφ) = Ŵ (Dφ, cofDφ, det (Dφ)) = W̄ (I1, I2, I3) with
(I1, I2, I3) := (|Dφ|22 , |cofDφ|22 ,det (Dφ)). |Dφ|2 :=

√
tr(DφTDφ), |cof(Dφ)|2,

and det(Dφ) describe the averaged local change of length, area, and volume,
respectively. We consider polyconvex energy functionals [15], where Ŵ is con-
vex and isometries, i. e. deformations with DφTDφ = 1, are local minimizers
(cf. Fig. 2). Typical energy densities are of the form W̄ (I1, I2, I3) = α1I

p
2
1 +

α2I
q
2
2 + α3I

−s
3 + α4I

r
3 with α1, . . . , α4 > 0, where the penalization of volume



Fig. 2. For two input shapes from Fig. 1 the deformation (via a deformed checker-
board), the averaged local change of length 1√

2
|Dφi|2, and the local change of

area det(Dφi) are depicted (colors encode range [0.95, 1.05]).

shrinkage, i. e. W̄ I3→0−→ ∞, enables us to control local injectivity (cf. [16]).
This type of energy has two major advantages: it allows to incorporate large
deformations with strong material and geometric nonlinearities, and its form fol-
lows from first principles and allows to distinguish the physical effects of length,
area, and volume distortion, which reflect the local distance from an isometry.
The first Piola–Kirchhoff stress tensor, which describes force per unit area in
the reference configuration O, is then recovered as σref[φ] = W,A(Dφ) := ∂W (A)

∂A .
The Cauchy (real) stress, describing the force per unit area in the deformed
configuration φ(O), reads σ[φ] = σref[φ](cofDφ)−1.

To simplify the numerical treatment and to allow for slight topological differ-
ences between the shapes Si we relax the constraint φi(Si) = S, i = 1, . . . , n, and
introduce a penalty functional F [Si, φi,S] = Hd−1(Si \ φ−1

i (S) ∪ φ−1
i (S) \ Si)

which measures the symmetric difference of the input shapes Si and the pull
back φ−1

i (S) of S. Our shape averaging model is thus based on the energy

Eγ [S, (φi)i=1,...,n] =
1
n

n∑
i=1

(∫
Oi

W (Dφi) dx+ γF [Si, φi,S]
)

+ µL[S] .

3 First Moment Analysis

As outlined in the introduction, our first moment analysis on shapes is based on
an analysis of stresses induced on the shape average by each individual input
shape. Modulation of each of these stresses results in a certain displacement, and
the proposed principal component analysis on shapes will be performed on these
displacements. To comprehensively derive this model we proceed in several steps:

Encoding nonlinear deformations via stresses on a linear vector space.
Let us at first review the underlying physical concept of stress. By the Cauchy
stress principle, each deformation φi : Oi → O is characterized by pointwise
boundary stresses on S in the deformed configuration, which try to restore the
undeformed configuration Oi. The stress at some point x on S is given by the
application of the Cauchy stress tensor σi = σ[φi] to the outer normal ν on S.
The resulting stress σiν is a force density acting on a local surface element of



S. Let us assume that the above relation between the energetically favorable
deformation and its induced stresses is one-to-one. Hence, the average shape can
be described in terms of the input shape Si and the boundary stress σiν, and
we write S = Si[σiν]. If we now scale the stress with a weight t ∈ [0, 1], we
obtain a one-parameter family of shapes S(t) = Si[tσiν] connecting Si = S(0)
with S = S(1). Thus, we can regard σiν as a representative of shape Si in the
linear space of vector fields on S.

Modeling the impact of an input shape on the average shape. Let
us now study how the average shape S varies if we increase the impact of a
particular input shape Sk for some k ∈ {1, . . . , n}. In fact, we intend to associate
to every surface load σkν a displacement on the averaged object domain O via
the solution operator of a suitable linearized elasticity problem. Here, the object
O actually is a deformed configuration of different original objects Oi. Hence,
we have to choose a proper elasticity tensor which reflects the compound stress
configuration of the averaged domain O. A simple isotropic linearized elasticity
model would not take into account the nonlinear geometric nature of our zero
order analysis.
To achieve this, we apply the Cauchy stress σkν to the average shape S, scaled
with a small constant δ. Based on our above discussion of stresses and due to
the sketched equilibrium condition, this additional boundary stress δσkν acts
as a first Piola–Kirchhoff stress on the (reference) configuration S. The elastic
response is given by a correspondingly scaled displacement uk : O → IRd. To
properly model the loaded configurations we concatenate this displacement with
every nonlinear deformation φi and take into account the sum of the resulting
elastic energies plus a term involving the given Cauchy stress in the following
energy,

Ek[δ, u] =
1
n

∑
i=1,...,n

W[Oi, (1 + δu) ◦ φi]− δ2
∫
S
σkν · uda .

Now, the displacement uk is obtained as a minimizer of this modulated energy
for a fixed set of deformations (φi)i=1,...,n under the constraints

∫
O uk dx = 0

and
∫
O x×uk dx = 0, which encode zero average translation and rotation. Let us

remark that the boundary integral can be replaced by the volume integral
∫
O σk :

Dudx, which is more convenient with respect to a numerical discretization. To
verify this, we use integration by parts and the fact that div σk = 0 holds on
O. As Euler Lagrange condition for uk we obtain div σk[δ uk] = 0 on O and
σ[δ uk]ν = δσkν on S after a tedious but straightforward computation. Here,

σ[δ uk] :=
1
n

∑
i=1,...,n

W,A((1 + δDuk)Dφi ◦ φ−1
i )cofD(φ−1

i )

is the first Piola–Kirchhoff stress tensor on the compound object O, which effec-
tively reflects an average of all stresses in the n deformed configurations φi(Oi)
for i = 1, . . . , n. As long as A 7→ W (A) is not quadratic in A, uk still solves
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Fig. 3. Sketch of the pointwise stress balance relation on the averaged shape.

a nonlinear elastic problem. The advantage of this nonlinear variational formu-
lation is that it is of the same type as the one for the zero moment analysis,
and it encodes in a natural way the compound elasticity configuration of the
averaged shape domain O. As an obvious drawback we have to consider the sum
of n nonlinear elastic energies for the computation of every displacement uk,
k = 1, . . . , n. In the limit for δ → 0, we would obtain uk as the solution of the
actually linear elasticity problem

div (C ε[u]) = 0 in O , C ε[u] ν = σkν on S

for the symmetric displacement gradient ε[u] = (Du + DuT )/2 under the con-
straint

∫
O udx = 0. Here, the in general inhomogeneous and anisotropic elastic-

ity tensor C is defined by

C =
1
n

∑
i=1,...,n

(
1

detDφi
DφiW,AA[Dφi]DφT

i

)
◦ φ−1

i ,

based on an appropriate transformation of the Hessian of the energy density W .
This elasticity tensor takes into account the loads of the compound configuration
based on the combination of all deformations φi on the input objects Oi for
i = 1, . . . , n. In our current implementation, we avoid the evaluation of C and
consider the above nonlinear approximation, which is simpler to implement but
computationally more expensive.

The actual covariance analysis based on the derived displacements.
Now, we have a set of displacements uk : O → IRd at hand which represent the
variations of the average shape, induced by a modulation of the stresses σk from
the deformations φk of the input shapes Sk into the average shape S. On this
space of displacements, we consider the standard L2–product (u, ũ)2 :=

∫
O u·ũdx

and define the covariance operator

Cov : L2(O)→ L2(O); u 7→ Covu :=
1
n

∑
k=1,...,n

(u, uk)2uk .

Obviously, Cov is positive definite on span(u1, · · · , un). Hence, we can diago-
nalize Cov on this finite dimensional space and obtain a set of L2–orthogonal
eigenfunctions wk : O → IRd – actually displacements – and eigenvalues λk > 0
with

Covwk = λkwk .



Fig. 4. The two dominant modes (right) for four different shapes (left) demon-
strate that our principal component analysis properly captures strong geometric
nonlinearities.

These eigenfunctions can be considered as principal modes of variation of the av-
erage object O and hence of the average shape S, given the n input shapes. The
eigenvalues encode the actual strength of these variations. Let us underline that
this covariance analysis properly takes into account the usually strong geometric
nonlinearity in shape analysis via the transfer of geometric shape variation to
elastic stresses on the average shape, based on paradigms from nonlinear elas-
ticity (cf. Fig. 4). These stresses lie in a linear vector space and thus allow for a
covariance analysis, which is by definition linear. The interpretation of stresses
in terms of displacements can be regarded as a proper choice of a scalar metric
g(·, ·) on the space of stresses interpreted as a tangent space of the shape space
at the average shape: we define g(σν, σ̃ν) := (u, ũ)2, given the above identifica-
tion of stresses σν, σ̃ν with induced displacements u, ũ via the proper compound
elasticity problem. Finally, this identification provides a suitable physical inter-
pretation of stresses as modes of shape variation.

4 Elastic Versus Riemannian Shape Analysis

The elasticity paradigm, on which our zero and first order shape analysis are
based, differs significantly from a Riemannian approach to shape space as pro-
posed for instance by Srivastava et al. [17]. Due to the axiom of elasticity, the
energy at the deformed configuration S is independent of the path from a shape
S̃ to the shape S along which the deformation is generated in time. Hence, there
is no notion of shortest paths if we consider a purely elastic shape model. The
visco-plastic model by Fuchs et al. [13] and the related model by Younes [18] de-
fine energies based on an integration of dissipation along transformation paths,
where dissipation is understood as a Riemannian metric. This approach is not
elastic in the classical axiomatic sense we consider here, and it partiularly re-
quires that at rest the intermediate configurations are all stress-free.
The above-mentioned conceptual differences are reflected in a different behav-
ior. If we regard shapes from a flow-oriented perspective, then a visco-elastic
approach would be more appropriate. However, the elastic approach is favorable
for rather rigid, more stable shapes, since it prevents locally strong isometry
violation. An example is provided in Fig. 5: The input shapes are regarded as
two versions of an object that may have none, one, or two pins at more or less
stable positions. Both pins are apparently not interpreted as shifted versions of
each other since a shifting deformation would cost too much energy. However, if
the material was visco-plastic, a horizontal shift of each pin would be easier and



Fig. 5. Average and variation (right) for two shapes with pins at different posi-
tions (left). The pins are not interpreted as shifted versions of each other.

result in an average shape with just one centered pin and its variation being a
sideward movement. This corresponds to a completely different perception of the
input shapes. The strong local rigidity and isometry preservation of the elasticity
concept becomes particularly evident in Fig. 4 and Fig. 6, where non-isometric
deformations are concentrated only at joints.
On a Riemannian manifold, the exponential map allows to describe geodesics
from an averaged shape S – in the sense of Karcher [19] – to the input shapes
Sk via Sk = expS(vk) for some tangent vector vk at the shape S in shape space.
Hence, a covariance analysis will be performed on the tangent vectors v1, · · · , vn
with respect to the Riemannian metric g(·, ·). In the strictly elastic setup, the
shape space is in general not metrizable. Instead, the stresses σk play the role
of the vk, imprinting the impact of Sk on the average shape S in terms of an
induced displacement uk.

5 Finite Element Phase Field Approximation

Since explicit treatment of an edge set is difficult in a variational setting, we con-
sider a phase field model picking up the approach by Ambrosio and Tortorelli
[20] for the discretization of the Mumford–Shah model [21]. Hence, a shape S is
encoded by a smooth phase field function v : Ω → IR, which is close to zero on
S and one in between. In our approach we construct such phase field functions
vi for the input shapes Si in advance. Usually, vi can be computed based on
the model in [20] applied to the input images ui. The specific form of the phase
field function v for the averaged shape S is then directly determined via a phase
field approximation of our variational model. Given a phase field parameter ε,
which will determine the width of the phase field, we first define an approxi-
mate mismatch penalty Fε[vi, φi, v] = 1

ε

∫
Ω

(v ◦φi)2(1− vi)2 + v2
i (1− v ◦φi)2 dx .

Here, we suppose v to be extended by 1 outside the computational domain Ω.
Next, we consider the energy Lε[v] =

∫
Ω
ε|∇v|2 + 1

4ε (v − 1)2 dx , which acts as
an approximation of the prior L[S]. Furthermore, we simplify the later numeri-
cal implementation by assuming that the whole computational domain behaves
elastically with an elasticity several orders of magnitude softer outside the object
domains Oi on the complement set Ω \Oi. Thus, given a smooth approximation
χε
Oi

of the characteristic function of the object domain Oi, we define an ap-

proximate elastic energy Wε[Oi, φi] =
∫
Ω

(
(1− η)χε

Oi
+ η
)
W (Dφi) dx , where

in our applications η = 10−4. Finally, the resulting approximation of the total



Fig. 6. A set of input shapes (cf. Fig. 1) and their modes of variation with ratios
λi

λ1
of 1, 0.22, 0.15, and 0.06.

energy functional for the variational description of the average shape reads

Eγ,ε[v, (φi)i=1,...,n] =
1
n

n∑
i=1

(Wε[Oi, φi] + γFε[vi, φi, v]) + µLε[v] .

In analogy, a phase field approximation Eγ,εk of the energy Ek can be constructed.
In these approximations, Fε acts as a penalty with γ � 1 and Lε ensures a mild
regularization of the averaged shape with µ � 1. Integration is performed only
in regions where all integrands are defined.
The actual spatial discretization is based on finite elements. We consider the
phase fields v, vi and deformations φi as being represented by continuous, piece-
wise multilinear (trilinear in 3D and bilinear in 2D) finite element functions on
an image domain Ω = [0, 1]d. A cascadic multi scale approach is applied for the
relaxation of the energy. For details both on the phase field approximation and
the numerical discretization we refer to [14].

6 2D and 3D Applications

We have applied our shape analysis approach to various collections of 2D and 3D
shapes. The computed average and dominant variations for sets of 2D shapes are
depicted in Figs. 1 to 7 as first illustrative examples. Figure 1 shows the average
of five human silhouettes. The corresponding deformations φi and local deforma-
tion invariants are displayed in Fig. 2 for two of the input shapes. Particularly
the deformed checkerboard patterns show that – due to the invariance properties
of the energy – isometries are locally preserved. Also, the indicators of length
and area variation only peak locally at the person’s joints. The corresponding
principal components are given in Fig. 6. The average shape is represented by
the dark line, whereas the light red lines signify deformations of the shape along
the principal components. Here, we see the bending of the arm and the leg ba-
sically decoupled as the first two dominant modes of variation. The silhouette
variations of raising the arm or the leg can only be obtained as linear combi-
nations of the first and fourth or of the second and third mode of variation,
respectively. A larger set of shapes is treated in Fig. 7, where 20 binary images
“device7” from the MPEG7 shape database serve as input shapes. Apparently,
the first principal component is given by a thickening or thinning of the leaves,
accompanied by a change of indentation depth between them. The second mode



Fig. 7. Original shapes and their first three modes of variation with ratios λi

λ1
of

1, 0.20, and 0.05.

obviously corresponds to bending the leaves, and the third mode represents local
changes at the tips: A sharpening and orientation of neighboring tips towards
each other, originating e. g. from the sixth or the second last input shape. The
final example uses 24 foot-shapes as input (which were originally provided as
triangulated surfaces and then converted to characteristic functions on the unit
cube). The average shape is shown along with the original shapes in Fig. 8, where
the input feet are color-coded according to their local distance to the surface of
the average foot. It is doubtlessly difficult to analyze the shape variation on
this basis: We see modest variation at the toes and the heel as well as on the
instep, but any correlation between these variations is difficult to determine.
The corresponding modes of variation in Fig. 9, however, are quite intuitive.

Fig. 8. 24 given foot shapes, textured with the distance to the surface of the
average foot (bottom right). The range [−6 mm, 6 mm] is color-coded as .

For all modes we show the average in the middle and its configurations after
deformation according to the principal components. The first mode apparently
represents changing foot lengths, the second and third mode belong to different
variants of combined width and length variation, and the fourth to sixth mode
correspond to variations in relative heel position, ankle thickness, and instep
height.



λ1/λ1 = 1 λ2/λ1 = 0.010

λ3/λ1 = 0.010 λ4/λ1 = 0.003

λ5/λ1 = 0.001 λ6/λ1 = 0.0008

Fig. 9. The first six dominant modes of variation for the feet from Fig. 8.

7 Conclusion

We have developed an elasticity-based notion of shape variation. Since the shape
space of elastically deformable objects inherently does not possess a Riemannian
structure, we utilized an alternative shape space structure, in which distance is
replaced by elastic deformation energy and boundary stresses play the role of
linear representations of shapes. Such an approach imposes a physically and
mathematically sound structure on spaces of elastic objects. Its computational
feasibility has been proven by application to sets of 2D and 3D shapes.
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