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Abstract. We presenta morphologcal multi-scale methal
for imagesequencerocessing,which resultsin a truly cou-
pled spatio-tempral anisotrojic diffusion. The aim of the
methal is not to smooththe level-setsof single frames but
to denoisghewholesequenc&vhile retaininggeonetric fea-
turessuchas spatialedges and highly accelerateé motions.
This is obtaired by an anisotrgic spatio-tempral level-set
evolution, wherethe additioral artificial time varialle senes
asthemulti-scaleparaneter Thediffusiontensorof the evo-
lution depemls onthe morphology of the sequene, givenby
spatialcunaturesf thelevel-setsandthe curvature of trajec-
tories(=acceleation)in sequencgime. We discusdifferent
regularization techniqiesand describean opeator splitting
techniaie for solving the problem. Finally we compre the
nev methodwith existing multi-scaleimage sequencero-
cessingnethoalogies.

1 Intr oduction

Duringthelastdeca@ scale-spacmethod have provento be
usefulin imageprocessingjncludingimagedenoising edge
enhamementand shaperecovery from noisy data[1,25,33,
38]. A givenimageis therebyconsiderd asinitial datato
somesuitableevolution prodem. The artificial time param-
eteractsasthe scaleparamete which guidesthe userfrom
noisyfine scalerepresetationsto enhanedandcoarsescale
representation®f the originalimage.

Within mary applicatims not only single images but
whole image sequenes are of particularinterest. The ob-
senedtime periad therely rangedrom afew secondto days,
montts andyears.In medicalimageprocessingecentacqui-
sition hardvaresuchasultrasound (US), magndic resorance
imaging(MRI) andconputedtomagraphyimaging(CT) en-
ablefor anobsenration of e.g.the humanheartduring a car
diaccycle, the flow of a tracerthrowgh blood vesselspr the
growth of tuma's. Theseimagesequenesandespeciallyul-
trasounl dataare charactdaeed by high frequentnoisetypi-
cally dueto measurmenterrorsof the uncerlying imaging
device. The particularinterestin medicalapgicationsis un-
derstanihg of growth andflow phenanenaof tissueandthe

quantitatve volumechang in time (e.g.blood volumein the

heart).Thusoneoftenis interestedn theextractionof certain

level-suricedrom thedatawhichbourd volumesor separate
regions of interest.Moreover the extradion of the velocities

describinghemotionof thelevel-setsn thesequene,theso

calledopticd flow, is desired.

Moreover the methodtakesinto accountthe velodty in
whose direction the level-sets move within the image se-
quenceand finally the acceleratia of the level-setswhich
characterize this motion in sequencgime. Let us empha-
sizethattheresultingevolution is atruly coupledanisotrojic
spatio-tempmal smootling processwhichtreatstheimagese-
guenceasaunit andnotasa complation of singleframes.

The paperis organizedasfollows: First, in Section2 we
discusssomebackgourd work on imageprocessingimage
sequencerocessing and the optical flow problem In Sec-
tion 3 we review ananisotric level-setdiffusion mocel for
the processingof single frames. This further motivatesthe
modeling of the final evolution. Before we give a detailed
descriptionof the new modeé in Section5, we will have to
discussthe extraction of motion velocitiesfrom givenimage
sequence@ Section4. In Section6 we discussthe robust
evaluationof cunatureson level-setsand the discretization
by finite elemeits. Before we drav conclsionsin Section
8, we would like to compare the new methodwith existing
imagesequene processingmethoalogy in Section?. In the
Appendx we give further detailson the spatio-tempral dis-
cretization.

2 Relatedwork

ScaleSpacemethals in image processingdefinean evolu-
tion operato E(t) which actson initial dataug and deliv-
ersascaleof represetations{ E(t)uo }+>0. Thetime param-
eter ¢t senes as the scale paraneter that guides from fine
scaleson theinitial data(t = 0) to successiely coarserand
smootherscales.Throwghou this paperwe will always de-
note the multi-scaleparameteby ¢ whereas- to avoid ary
confusia — for the sequene-timeparaneterwe will uses,
whichrepresets time in theimage-seqgencedata.
Thesimplestlinearimageproessingmockl givenby the
heatequatio 9;u — Au = 0 with thenoisyimageu asinitial



dataleadsto smoothimageshut also destrgs edgesin the
image,indicatedby high gradents. The propcsal of Perona
andMalik [24] andthe modification of Cate etal. [7] avoids
this drawvbackconsideing anevolution problem

Byu — div (G(|Vue|) V) = 0,

wherethe diffusion coeficient depend on the magnitude of
the gradent of a (reguarized)versionof the actualimageu.
Here,u, = K, * u is the corvolution of the imagewith a
Gaussiarkernel K, of variarce o > 0. In contastto the
original Perona/Malikmocel (o = 0) theregulaiizationturns
this mocel into a mathematicallywell posedprodem and
morewerit avoidsthedetectiorandaccentationof artificial
edgesvhich aredueto noise.A suitablechoicefor the diffu-
sion coeficient is G(s) = (1 + s2/X2)~! for someX > 0.
At leastformally, decreaing the diffusion coeficientin ar-
easof highgradentsthenresultsin abackvarddiffusionand
thusan enhaicementof edgeswhereasareasof low gradi-
entsaresmootled in anisotropicway. The methodwasim-
proved by Weickert [37] who took anisotrgic diffusioninto
accoui. Therdoy thediffusionis of original Perora/Malik re-
spectvely Cate etal. typein directimnsof theimagegradent
(i.e. orthogoral to level-sets)andof lineartypein directiors
tangetial to level-sets.This leadsto an additicnal smooth-
ing tangentiakmootling of level-setsandenablego amplify
intensitiesor correlatiors alonglevel-sets.In [26] Preusser
andRumpfappliedthis type of anisotopic diffusionto visu-
alize arbitray vectorfields. Corvergerce of a finite element
methal andfinite volume methaswereshovn by Kacurand
Mikula [18] and Mikula and Ramarosy{22]. Furthermore
adaptvity wasconsidredin [5,27,19].

In the axiomatic work of Alvarezet al. [1] gener&non-
linearevolution equatimswerederivedfrom a setof axioms.
Includng theaxiomof grayvalueinvarance(i.e.themocklis
suppaedto beinvariart under mondonetransfomationsof
thegrayvalue)leadto acunatureevolution mocel. Curvature
motionhasbeenstudiedintensively in geomety andphysics,
whereinterfacesaredriven by surfacetensiorn4,34]. Already
in thebasicmodel for meancurvatue motion

Ou — |Vuldiv(Vu/|Vu|)= 0,

singulaities in the evolution may occu. In this settingexis-
tenceof viscositysolutiors hasbeenshavn indepenlently by
Evars and Spruck[13] andChenet al. [8]. Anisotrofc cur-
vature motion hasfor instancebeenstudiedby Belletini and
Paolini [6]. Moreover Sapiroproposeda modificationof the
meancurvature motion modelwhich takesinto accoun the
imagegradent magnitua [31].

The detectionof motionin imagesequenes,alsoknovn
astheopticd flowproblem is oneof thefundamentatasksin
computervision andimageprocessing.For two dimersional
(2D) imagesit hasbeenstudiedextersively in the past[2, 3,
30,12,23]. The velacity of a level-setsplits up into a com-
porent normel to the level-setand a commnenttangeial
to it. The extraction of the tangetial velccity is in general
not well posed[30]. Thus,onehasto restrictthe setof pos-
sible solutionvelocitiesandinsteadwork with the apparent
velocity[15], which arisesfrom locally constantranslatios
in spaceAs analternatie onemight askfor regulaizations
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in termsof elasticstressesr viscousfluid effeas [35,20,10,
9,11,14,17], whichis conputationdly expersive andmostly
paysoff in caseof large defamationsin betweerframesof
the sequene, which we rule out in our apgications consid-
eredhere.

Theimageprocessingnodelsdiscusse@bove donotim-
mediatelyapgy to imagesequene processing.Sincethere
is no couping betweersuccessie framesof the sequencén
ary of the appioachesit is only possibleto proessthe se-
gquenceasacollectionof steady-inages Still thislacksacor
relationof thesmootledversiors of thesingleframes. There-
fore modificatiors of the standardmageprocessingmethals
have to be taken into accoum, which introdwce a coypling
betweerthe framesof the sequene in termsof the velodgty
or acceleratiorof the sequenceln the 2D movie multi-scale
analysig[15,1] anevolution equationwasderived from a set
of axioms,whichdepend onthecunature(given in termsof
the eigervaluesandeigervectorsof the shape-perators, cf.
Section3) of level-setsandthe acceleratiorof the motior

Owu — |Vu|F(t, S, accel).

This forms the basefor the apppoachespreseted by Sartiet
al.in [32] andMikula etal.in [21]. In Section? thelatterwill
be comparedto the methodbeingpresentedh this paper

3 Review of Anisotropic level-setdiffusion in
steady-image processing

In this sectionwe will briefly review ananisotrgic level-set
diffusion modelwhich was originally presentedn [28]. As
commonfor level-setmodels,we deal simultaneosly with
all level-sets Although in certainapplicatiors our interestis
focusedon onespecificimplicit surface, possiblyin advarce
corvertedfrom a paranetric to animplicit represetation.

Let usdenoteby ug : 2 — R thegrayvaluefunction of
theinitial imagewith inscribedevel-sets

MG :={z € 2|ug(z) =c}.

We assumeu, and the set of correspnding implicit sur
faces{ M§}. to benoisyandaskfor afamily of successiely
smoothedmages{u(t,-) |t € R{} wheeu(t,-) : 2 - R
andu(0,-) = wg(-). Throughaut this pape 2 will always
be the unit squareor cube[0,1]¢, d = 2,3. The variablet
senesasthescaleparaméer. Therely, for eachgrayvaluec a
family of suraces{ M}, g+ is geneated,with M(, ) =
MG§. Here we assumeu(-,-) to be sufficiently smoothand
Vu(t,z) # 0forall (t,2) € R{ x £2. Indeed dueto theim-
plicit functiontheoremthe corresponihg sets M § thenare
actuallysmoothsurfaces.

3.1 TheSha Opermatar

Sinceourgoalis amorphologicd multi-scalemodéd, weneed
acharacterationof thelevel-setgeonetryonimagesTo this

endlet us considerthe normalto a level-setN (z) := \g—Z\



Morphdogicalimagesequenreprocessing

of someimageu. We derote the tangem spaceby 7, M :=
(span{N(z)})*. We computethe Jacobiarof the normal
D%y
DN=(ld-NQ®N)——
( ® N) vl
onR? andconsidettherestriction
S :=DN(ld— N ® N)

on the tangentspace7, M. S is a symméric mappng and
onthetangem spacef, M it coincideswith the Shage Oper

ator S7, o¢. Therefae S is charaterizedby the eigervalues
{k',k2,0} andthe eigervectors{v',v?, N'}. The eigerval-
uesk! correspnd to the principal cunvatuesof the level-set
andthe eigevectos v’ arethe principal directins of cuna-
ture. Thus,the geoméry of the level-setis determired by S

via its eigervaluesandeigervectors.

3.2 Theanisotopic level-setmodel

We considerthe following type of nonlinear boundary and
initial valueprablemon £2: Givenaninitial imageug : 2 —
R find a family of images{u(t,-) : 2 - R},cg+ Which
obey thefollowing anisotrgic evolution equatin

Opu — |Vu|div(a”TEM |§_uu|> =0 inR* x 2,
a"TzM%zo onR* %81, (1)
U(O, ) = Uo() in 2,

wherer denots the outernormalto (2. Theanisotrgic geo-
metriclevel-setdiffusion modelshoulddepemnl onthegeom-
etry of thelevel-sets.Thus it is naturalto basethe definition
of thediffusioncoeficienta?- ,, onaregularizedversionS”

of the shapeoperato S. We assumehis regulaiized version
diagmalizeswith respecto the basis{v!?,v%7 N} hav-

ing eigervalues{x!?, k?,0}. We thenconside the scalar
fundion G(s) := (1 + s2/X2)~! from the basicimagepro-
cessingmocels now actingon S?. In matrix represetation
we thusobtain

0. p 1= a5, (57
G(KJLJ)
G(HZ,J)
0

=BT B,,

whereB, = (v!7,0v%7, N°)T | i.e.thebasistransfamation
fromtheregulaizedframe of principal directionsandthenor
mal {v1:7,v%? N7} ontothecanonicabasis{ei, ez, e3}.
Let usrecallthatin the fundion G the paraneter A acts
asa steeringparaneterfor the detectiom of edgesFor larger
valuesof A\, more featueson a level-setwill be regardedas
edgeslin the standard®eronavalik model thevalue is ex-
actly the switch betweerforwardandbackvarddiffusion.

Remarkl. Although we have basedthis shortreview on 3D
imagesand therefae level-setswhich are 2D-sufaces,we
will presentexampes of 2D-image-sequecesin later sec-
tions. Thedefinitionof thediffusiontensorof the anisotrgic
diffusion tensorfor 2D imagesthenobviously hasthe form
BIdiag{G(x"),0}B,, wherex’ is theregularizedcurvature
of thelevel-lines.

4 Extracting motion velocitiesfrom imagesequences

Let usfrom now onassumewe areconernedwith animage
sequencéAt first, we corsidera contiruousfamily of images
onsometimeintend [0, 7] eachimageagaindefinedon? =
[0,1]?,d = 2,3, whichwe will dende by

u:Q - R, (s,2)— u(sx),

where () dendes the sequene-time/spacecylinder Q :=

[0,T] x £2. Hereandin the following s alwaysdenoteghe
sequenceime paraneterandx asbefae spatialcoodinates.
Again the perspectie of level-setswill play a centralrole in

ourmode. As before we denote

ME(s) = {z € 2] u(s,z) = c},
Vu(s,z)

N9 = uts, o]

if [Vu(s,z)| # 0,
the level-setof u(s, z) to level-valuec € IR respectiely the
normalto this level-set,which now depemnl onthe sequence-
time s. Hencewe have families of level-sets{M*(s)}.cr
which chang in sequene-time.Assumingthereis somecor-
responénce betweenconsective imagesin the sequene
(i.e.the sequeneis continwbusin sequene-time),it will be
an essentialpart of the new model, to extract the underly-
ing motion which influencesthe obsered imageintensity
Before proeeedingto the descrigion of the new time-spae
coupledsmodhing model, we therefae will briefly focus
on the extraction of thesemaotionvelocitiesfrom the image-
sequenceA moredetaileddiscussiorcanbefoundin [29].

Suppee

v:Q = RE  (s,2) - v(s,z)

is the velocity field geneatingthe motionin spaceandtime.
Therefae asinglemotiontrajectoy is describedy z(s) with

9sx(s) = v(s, z(s)).

It is obviousthatthis opticalflow prablem— theextradion of

v fromtheimagedata— is anill posedorodem: Any tangen-
tial motion,thatonly moves onelevel-setwithin itself cannad

be captued by the process.Neverthelessfollowing two as-
sumptionawill allow usto derive a formula for the socalled
appaert velocity.

(A1) Intersitiesare preservedalongmotiontrajectories:

(S0, 2(80)) = u(so + 1, 2(s0 + 7))
-850 <7<T—sp.

This assumptioris reasonale sinceit is relatedto the

invatiance of the image acquisitiondevice, which usu-

ally measurephysicalquantities.If this physicalquariity

movesin time, sodoesthecorrespadingimageintensity
(A2) Locallytheuncerlying motionis a translation

N(s0,2(s0)) = N(so + 7,2(s0 + 7))
— S0 S T S T — S0-

This assumptionis of course fulfilled, assumingthe
scenenyconsistof solid objectsmaoving in space.



Differertiating theseassumptioawith respecto  andeval-
uatingat 7 = 0, we getthe following two expressionsfor
v =vnN + vgg

Osu
|Vul
vg = =S, N. ()

Un=v-N=— if [Vu| #0, 2

Equation (2) is an expression for the normal compmnent
uvnIN = v - NN of thevelocity. For equation(3) we remem-
berthatthe ShapeOperatorS operdeson thetangem space
T.M andd; N € T, M. Adding thetwo partswe obtainthe
apparentvelocity

Vapp = Un + Vig = — (|8VS—Z|N + 5_163N> @

In 2D this formua wasalreadyobtanedby Guichard15,16]
althowgh he did not explicitly expressit in termsof the in-
trinsic ShapeOperato. From (3) we againseethelimitations
of thetangentialmotioncaptuing, becausd involvesthein-
verseof the ShapeOperatorwhich of coursemaynot exist.

Moreover, in mary physical applicdionsit will be suffi-
cientto have the normalvelccity v,,, if the obsered process
givesreasonthatv,, = 0. For examge in poraus medium
flow we alread know from the physicalmocel, thatthe flow
will bein directin of the pressurggradient, which in sim-
ple settingswill bethe normal to the level-sets.Also in the
situationdepictel in Figure 1 we concluck that the normal
velocity is sufficient to charactaze the motionsincethetis-
sueof the human heartwill notallow for tangemial motions.
Therewe have depictedthe extraction of motion velocities
from animagesequene shaving onevertricle of the human
heartduring a cardiaccycle. Moreover Figure 2 shavs the
extraction of thevelodty from anatrtificial dataset,in which
ellipsoidallevel-setschametheir half-axes in time.

Giventheappaentvelocity we canfurthemorecompute
theacceleratiorf themotion whichis equvalentto thecur
vatue of the apparat trajectoy, resultingfrom the appaent
velocity (cf. [15,16])

accel(s, z) := Orvapp(s + 7, 2(s + 7))
7=0

= O5Vapp *+ (VVapp) Vapp- ®)

In Figure 1 we have depictedthe extradion of motion ve-
locitiesfrom animagesequene shaving oneventiicle of the
human heartduringa cardac cycle.

5 Coupled spatio-temporal anisotropic level-setdiffusion
in imagesequencerocessing

We are now equippedto formulate the new coupledspatio-
tempaal anisotrgic level-setdiffusionmocel. Wewouldlike
to combne the goad edgeandcornerpreseving behaior of

themodel reviewedin Section3 with ananisotrofic smooth-
ing in sequene-timein direction of the apprentvelocity.

To this end let us dende the sequene-time/spacegradent
by Vi, := (0, V) andthe correspnding divergerce by
diV(siw) =0;+ V.
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Given a noisy imagesequences, : ¢ — IR, we write
down thefollowing spatio-temprallevel-setprodem:
Findu : Rt x Q —» R sudthatin R* x Q:

VS Z,
Byt — | Vi oy | diVis (AGM) =0. (6)

We imposetheinitial condition
U(O, ) ) = uO('? )

andfurthemoreoneof thefollowing boundarycondtions

in@ — R,

Vi, - Ys,y =0 ONRY % 0Q, (BC1)
Vu(t,s,-)-v=0 onaf?
o (BC2)
u(-,0,") =u(-,T,-) inR*" andn,

where y; , dendes the outer nomal to the sequence-
time/spaceube( andv dendestheouternormalto 4f2. The
two differentboundaryconditions have the following mean-
ing. In (BC1)we prescribegeneally naturalbourdarycond-
tions to the whole sequene, i.e. we have no flux acrossthe
spatialbourdary of the single framesand morewer no flux
atthebeginning andtheendof thesequencdt maybemore
convenient to imposenatual bowndary condtions in space
andperiodcity in sequene-timewhichis statedn (BC2).

Again the varialle ¢ in the problem actsasthe scalepa-
rameterandwe agan emphasizéhat we malke a distinction
betweert ands; s denotirg thesequencéime parametefThe
definition of the prodem indeedincreasedhe dimensionof
thedataby one,whichresultsn 4D respectrely 5D prodems
for 2D respectiely 3D imagedata.In thefollowing sections
wewill describehow to solvethesedD respectiely 5D prob-
lemswith moderae effort.

It remainsto definethe diffusiontensorA? for the new
model.Dending thetensomproductby v @ w := (v,w;);;, we
considerthe nomalized sequene-time/spacevelocity vec-
tors V7 = (1,vg,,)/|(1,v7,,)| basedon reguarized ap-
parentvelocitiesvg,,,, andthe diffusion coeficient already
known from the steadyimagemodelto build

0 0
AT =al VIRV + —,
0| a7, ((S%)

with a = G(|accel”|). Thefunction G(s) = (1 + s2/A?)
againis thewell known function from imageprocessing(cf.
Section3). With this definition of the diffusiontensorwe in-
deedprescrile a betavior of the evolution thatis edgepre-
servingin spacebut alsosmoothimy the sequenenonlirearly
in directionof V7. If the accelertion is high the diffusion
will be deceasedvia the function G. This leadsto a good
preseration of highly curved motiontrajectores (i.e. highly
acceleratednotion) asshown in Figure3.

In generd the deconposition in the definition of A7
is not orthagonal. Only if the comgete apparent velodty
vapp Vanishesthediffusiontensorrediwcesto a diagoral ma-
trix. Therebre in geneal we actually have a couged dif-
fusion, with a mixed spatio-terporal diffusion compament
G(|accel’|)V? @ V7. Thiscanbeobseredfrom theexamge
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Fig. 1. Fromanimagesequencgtaken by an ultrasounddevice, and shawving the left ventricle of the humanheartduring onecardiaccycle
we have extractedthe velocitiesof the underlyingmotion. Fromtop left to bottomright for successie framesof the sequenceneiso-surfice
of the muscleof the heartis depicted.The coloring codesthe normalvelocity going inward (red) or outward (blue). Sincethe tissueof the
hearts muscledoesnotallow for tangentiaimovementsit is sufficient to consicer the normalvelocity in this application.

shovnin Figure4, wherewe seea diffusionacrosghe sharp
edgeof thesquae in directionof theundetying velodty.
Figure 5 shaws the evolution of a noisy sampledataset
uncerthe couped diffusionmodel. Theimage-segencecon-
sistsof acontinwusfunction whoselevel-setsweredisturked
rancbmly in normaldirection The apgication to real datais
shawvn in Figure 6 wherewe have extractedoneslice of the
3D echocadiogrghicalheartimagesequencécf. Figurel).

Remark2. Hereandin the sequelwe have dended reguar-
ized quantities (like S7,vg,,, accel”) with a supersdpt o.
We emphasizehat we do not distinguishbetweenreguar-
ized geometical quantitiesand quantitiesbasedon regular-
ized data,althoudh they in generaldo not coincide In the
next sectionwe will focuson the type of reguarizationwe

chocsein ourapplicatians.

6 Discretization and numerical solution

Up to now we have consideed imagesequencgto be suffi-
ciently smoothin spaceandtime Q. Sincein theapplicatiors
imagesequenceariseasa finite sequencef singleimages
(theframes) consistingof arraysof pixels or voxels, we will
discretizethe modelin an appr@riateway. For eachsingle
frame,we interpret the pixe/voxel valuesasnodal valueson
a uniform quadilateral respectrely hexahedralmesh cov-
ering the whole spatialdomain{2. Moreover sincetypically
thetime offset As betweensuccessie framesis constantn
imagesequencg we introduce an equidistantlattice in the
sequene-timedirection In ary coodinatedirection we con-
siderthe datato be piece-wisemulti-linear meaningpiece-
wise linearin sequene-timeandpiece-wisebilinearrespec-

tively trilinear in spaceTo simplify the notation we will al-
ways derote discretequariities by uppe caselettersto dis-
tinguishthemfrom their continuouscorrespadencen lower
casdletters.

6.1 Shaeopeator andapparentvelocityon discretedata

The modelpreseted abore makes extensie useof regular

ized geametric quantitiessuchasthe shapeopeator S° and
theapparenvelccity v, . It is obviousthaton noisyimage-
sequencelataa regularizationis necessarybut alsothe defi-
nition of thesequantitiesinvolving higher order derivatives
on imageswhich are usually piece-wiseconstan or rarely
given as bilinear respectely trilinear datais not clear We
will therebrein thefollowing focus onthesereguarizedge-
ometricquartities.

For the regularizationof the undetying imageswe have
differert method athand

— The simplestnonimorphologial regulaization method
whichis quite standad in imageprocessings the convo-
lution of theimagewith a Gaussiarkernel. Therely one
solvesa shorttime stepof the heatequation

o —A =0 on@,
with the given imageu asinitial valueto theprodem.
— Themorphologicd analgueof the Gaussiarcornvolution

is the meancurvatue evolution, which lets all level-sets
simultaneasly evolve in directionof their normalwith a



