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ABSTRACT. The flow of a thin viscous film under the influence of a surface active
agent (surfactant) is described by a system of degenerate parabolic equations. A robust
and effective numerical scheme based on a finite volume discretization in space and a
suitable operator splitting in time is presented. The convective part, which models the
effects of Marangoni forces, is treated by an higher order explicit up-wind scheme with
a limited linear reconstruction. For the fourth order parabolic part, which corresponds
to the classical thin film problem, we formulate a finite volume scheme that entails
the same conservation properties continuous solutions have, . e. energy and entropy
estimates. The scheme and the fundamental estimates are derived in the relevant 2D
case. Numerical simulations and the convergence result are currently restricted to 1D.
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1. Introduction

A surfactant (SURFace ACTive AgenNT) is a chemical agent that accu-
mulates as a mainly mono-molecular layer at the surface of a liquid and in-
fluences its surface tension and thereby its spreading behavior. Applications
of surfactant-covered thin films range from medicine (the liquid lining of the
human lung) to modern coating technology (e.g. aircraft anti-icing films).

The evolution of a thin film of a viscous incompressible fluid on a plain,
solid surface which bears a surfactant monolayer at the liquid—gas interface
can be described by a system of convection diffusion equations. In the thin
film limit, lubrication approximation (c¢f. [ORO 97]) reduces the problem to
the investigation of the following system of higher order equations:

Surfactant driven thin film
dyu + £8div (u¥VAu) — div (u?Vw) =0 [1]
dw + 18div (WwVAu) — div (uwVw) — DAw =0 2]

Here, u denotes the height of the film and w represents the concentration of
the surfactant at the surface of the fluid.

The evolution of film height is governed by two main effects, both related
to surface tension. On the one hand there are capillary forces modeled by the
fourth order term — S is a rescaled capillarity number. On the other hand the
presence of the surfactant gives rise to surface tension gradients (Marangoni
forces) which correspond to the first-order term in equation [1]. A no-slip
boundary condition at the bottom of the thin film leads to the mobility u? in
the fourth order term.

Simultaneously, the evolution of the surfactant concentration on the surface
of the film (equation [2]) is influenced by two effects: the transport by the
fluid’s (vertically averaged) velocity and the surface diffusion. Here, D is the
inverse Péclet number.

In the literature (cf. [JEN 92]), the convective term of equation [1] usually
has the form +3div(u?Vo(w)), where o is the surfactant concentration depen-
dent surface tension. In this paper we use the linearization o(w) = 1 — w that
entails the equation given above.

2. Reduced Model for Thin Film Flow

In this section, we will restrict ourselves first to the sub-problem of thin
film flow solely driven by the liquids original surface tension. Hence we assume
w = 0 and introduce a more general mobility M which is in our application
given by M(u) = %u3. Furthermore, we denote by p = —Au the observed
hydrodynamical pressure and obtain the reduced problem:
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Figure 1. Sketch of the discretization in 2D and 1D.

Thin film equation
Opu — div (M (u)Vp) =0 [3]
p=—Au [4]

In contrast to the method that was developed in [GRU 00] and analyzed
in [GRU 02], we will present here a pure finite volume discretization for the
complete problem. In particular, we will not need a notion of discrete pressure
defined in an affine FE-space on the dual grid.

To begin with the domain discretization (cf. figure 1), let us assume the
computational domain  to be polygonal bounded and completely covered by
non degenerate, polygonal finite volume cells T; € T for ¢ € Z, where I is
some index set. The cells are assumed to overlap only at faces and all interior
cell faces are shared by exactly two cells. For neighboring cells T;, T} (written
Jj € N(i)), there exists a common edge which we denote by e;;, furthermore
lei;| is its length and £ denotes the set of all edges. Let v;; be the normal on e;;
oriented from T} to T}, and we assume that there is a family of points x;, one for

every cell, such that v;; = é?:;’:l for all faces e;;. Finally let d;; := |z; — z4].
i@

In one space dimension, e;; is the common point of two neighboring intervals
T; and Tj, and we set |e;;| := 1. The normal v;; = %1 so that the restriction

¥i~%_ holds true for arbitrary choices of the points z; within 7}.

Vi = Tas—ai]

Let h be the maximum diameter of the cells and 7 the time step applied for
the discretization of the time interval [0;7]. Finite volume functions that are
constant on cells and time intervals are denoted by capital letters U, P, ... By
writing Uf, we mean the constant values of U on cell T; in the k-th time step.

Based on these notional preliminaries we now discretize the thin film flow
problem. Here, we pick up ideas for the discretization of second order de-
generate diffusion problems due to Hilhorst at al. [EYM 98] and in a similar
fashion used by Mikula and Ramarosy [MIK 01] and transfer them to a mixed
formulation for the actual fourth order degenerate diffusion problem. It will
turn out to be essential to replace the continuous mobility M by a discrete
mobility. The special choice for M will be explained below. Finally, we obtain
the following discrete problem:
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Finite volume scheme

Uttt _pr 1 P+l _ pk+t
%:W Z M(Uf+1,Uf+1)|€ij|% 5]
JEN() !
1 Ukt _phtt
k+1 _ I I e
P = 3 leal P .

JEN (i) K

For this scheme, we derive a number of estimates that especially will al-
low us to prove a convergence result. The names underline analogies to the
corresponding continuous results.

Proposition 2.1 (Discrete Energy Estimate) Let U and P be a solution
of the finite volume scheme. Then the following equation holds:

N—1
€ii €4 2
> Lalgy oy Gl (e ot - - ) +
e;; EE LY k=0 e;; €E v
- le| less]
2r MU UYL (P — P = 3T SR - 0P [
I; e,-jzeé' ’ dij ’ Cijzeg dij ’

The proof of this lemma is rather straightforward following the advice in
[GRU 00] and [EYM 98] and thus left to the reader.

To formulate an entropy estimate, we need the following definition:

Definition 2.2 (Admissible Entropy-Mobility Pair) Assume that m is a
(continuous, non negative) approzimation of M and sy € R™. Then functions
G:R - R and M : R? — R are called an admissible entropy-mobility pair

iff:
— M is continuous and symmetric with respect to its two arguments
-MU,U) =m(U)
- MU;, U;(G"(U;) = G"(Uy)) =U; = Us

where g(s) = fsso ﬁ and G(s) = f:o g(r)
These assumptions are especially satisfied if we choose M as the harmonic

integral mean of the continuous mobility M on the interval spanned by the
corresponding height values U; and U;:

. —1
M(Uz;U]) = { (‘ﬁfU: m%r)) if Uz 7’5 Uj [8]
m(Us) if U;=U;
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Proposition 2.3 (Discrete Entropy Estimate) Let (G, M) be an admissi-
ble entropy-mobility pair. Then the following inequality holds:

N
SITIGUN) + 7YY ITI (P < ST GU0) 9]

€L k=1 i€L i€l

Since this is the part most unique to our problem and the proposed finite
volume scheme (as compared to [GRU 00]), we will demonstrate the proof of
this lemma.

Proof We start with equation [5] of our finite volume scheme and test with
G'(U*+1), i.e. we multiply by G'(UF™) and sum over i for all cells:

S i e -

i€L

€;
,]_Z Z M Uk+1 Uk+1)|d.7|(Pk+1 Pk+1)GI(Uk+1) [10]
i€ZL jEN (i)

Let us emphasize that each face e;; appears twice on the right side. With
the convention that £ contains each side only once, we can write

N-1

37 ST IT U - URGE (U =

k=0 i€T

N-1
€;
-7 z Z M Uk+1 Uk+1) |dJ| (Pk+1 Pk+1)(G/(Uk+1) G/(U;c+1)) ] [11]
k=0 e;; €E v

Applying the convexity of G (on the left side) and the entropy-mobility
property (on the right side) we obtain

Z Z|T| Uk+1 Uk )< T Z Z |€m| Pk+1 Pk+1)(Uk+1 Uk+1)
k=0 i€l k= Oe”€5
[12]

The left hand side simplifies further by telescopic summation, while we
transform the summation on the right hand side to a summation over cells:

Yo ITlaWd) =Y T ay) < TZZ > |€”'P’c+1 U — Ukt

i€l i€l k=0 i€Z ]EN(z)
[13]

Plugging equation [6] into the right-hand side the statement of the propo-
sition is established. O
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Finally, we have the following result of compactness in time, whose proof is
again quite analogous to the proof for the finite element discretization given in
[GRU 02] and thus is skipped here.

Proposition 2.4 (Time Compactness) Let (U, P) be a solution of our fi-
nite volume scheme for a time step width T and space discretization width h
and let s be such that 0 < s <T = N7 and max{ M(Uf,U})|e;; € £,0 < k <

N} < M. If we write U;(t) for the value of U on the cell i at the time t, then:
T—s A
/ ST (Uit + 5) — Us(#)2dt < CTs [14]
0 i

These estimates allow us to continue as in [GRU 00]: The entropy estimate
2.3 allows us to construct numerical mobilities m that entail a weak non nega-
tivity result. Estimates 2.1, 2.3 and 2.4 allow to prove a compactness argument,
for U in time and space that leads to a convergence result in 1D.

3. An Operator Splitting Scheme for the Surfactant Problem

We will now discuss a finite volume scheme for the original problem of the
surfactant driven motion of a thin viscous film. I.e. we consider equations [1],
[2]. Let us especially focus on the time discretization. Here we apply a natural
operator splitting: We isolate the vertically averaged velocity v (known from
lubrication theory) from the second equation, and split each of the remaining
equations as follows — indices ¢ + 0.5 indicate in the usual way an intermediate
time step of the splitting scheme:

Operator splitting

(uisos —ui)/ri = gdiv(ud V) [15]
(Uiss — uisos)/m = —%Sdiv(uerlVAuiH) [16]
Vi1 = %Sufﬂ VAu; 41 — uiy1 Vw; [17]

(Wigos —wi)/17 = —div(vip1w;) [18]
(Wit1 — Wito5)/T7i = DAwiyr [19]

The terms involving higher order derivatives are all computed with an im-
plicit method, while the first-order terms can be treated explicitly. Let us now
inspect more closely the separate steps of the proposed splitting scheme and
their physical meaning:
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[15] Marangoni Flow: The flow of the film that is induced by surface
tension gradients.

Our method is best for convection dominated problems, i.e. where S and
D are very small. In order to reduce the numerical damping, which might
even artificially superpose the effects of the parabolic parts, it turn out to be
indispensable to use a higher order scheme where possible.

We consider the Engquist—Osher up-winding method from [ENQ 81]. The
values on cell faces from both sides (that are required for evaluation of the
numerical flux) are extrapolated linearly from the given (constant) values in
the usual neighborhood. To avoid oscillations, a min-mod limiter function (cf.
[KRO 97]) is applied.

[16] Thin Film Flow: The thin film flow (induced by surface tensions
absolute values) is treated as described in section 2 above, except we take into
account explicit terms on the right hand side of the equation.

[17] Velocity: The vertically averaged velocity is computed explicitly from
values known so far.

[18] Surfactant Transport: The surfactant is transported linearly with
the velocity computed in the previous step. This term is treated with the same
up-winding scheme used in step [15].

[19] Surface Diffusion: The surfactant diffusion step is computed by a
plain finite volume scheme. For the discretization of the Laplacian, cf. the
treatment of the pressure equation in section 2.

4. Numerical Results

The scheme described above has been implemented so far for problems in
one space dimension.

Figure 2 depicts two characteristic simulations that have been computed
with the described scheme. On the left side, we see the evolution of a film of
initially constant thickness after a drop of surfactant has been applied. The
large surface tension gradients at the boundary of the surfactant droplet give
rise to Marangoni forces which initiate the motion of the liquid and the spread-
ing of the surfactant monolayer. To ensure a better visibility we apply a non
physical scaling of the film height and especially of the surfactant concentra-
tion graph drawn on top of the thin film graph. On the right side, we consider
an initial configuration with a surfactant on top of a compactly supported thin
film. Note how, after the Marangoni flow has reached the boundary of the film,
it causes the film’s support to spread, which is remarkable because the film is
expected not to spread in the absence of a surfactant. Furthermore the method
has been tested on the similarity solution given in [JEN 92] for S =D = 0.
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Figure 2. Numerical results in one space dimension.
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