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Piecewise linear interpolation revisited: BLaC-wavelets

H. GONSKA, D. KACSÓ, O. NEMITZ, AND P. PIŢUL

Abstract. The central issue of the present note is the BLaC operator,
a ”Blending of Linear and Constant” approach. Several properties are
proved, e.g., its positivity and the reproduction of constant functions.
Starting from these results, error estimates in terms of ω1 and ω2 are
given. Furthermore, we present the degree of approximation in the bivari-
ate tensor product case. This is applicable to image compression.
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1. Definitions and properties

BLaC-wavelets (”Blending of Linear and Constant wavelets”) were introduced by
G. P. Bonneau, S. Hahmann and G. Nielson around 1996 and constitute a tool to
compromise between the perfect locality of Haar1 wavelets and the better regularity
of linear wavelets. This compromise is realized by means of a parameter 0 < ∆ ≤ 1
that will appear in the sequel. First we introduce some notations. For the real
parameter 0 < ∆ ≤ 1 consider the scaling function ϕ∆ : R → [0, 1] given by

ϕ∆(x) :=


x
∆ , 0 ≤ x < ∆,
1, ∆ ≤ x < 1,
− 1

∆ · (x− 1−∆), 1 ≤ x < 1 + ∆,
0, else.

Remark 1.1. The two extreme situations are obtained for ∆ = 1 and ∆ → 0,
when ϕ∆ reduces to B-spline functions of first order, also called hat-functions, and
to piecewise constant functions, respectively. The gap in between can be smoothly
covered by letting ∆ be in the interval (0, 1].

Furthermore, for i = −1, . . . , 2n − 1, n ∈ N, we define by dilatation and translation
of ϕ∆ the following family of (fundamental) functions:

(1) ϕn
i (x) := ϕ∆(2nx− i), x ∈ [0, 1].

1Alfréd Haar was born in 1885 in Budapest and died 1933 in Szeged. Until after World War I he had
also a chair at the University of Cluj (then Kolozsvár). More about his biography can be found on the following
site: http://www-history.mcs.st-andrews.ac.uk/Mathematicians .
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In Figure 1 the functions ϕn
i , i = −1, . . . , 2n − 1, with a parameter 0 < ∆ < 1 are

depicted. Notice that the support of ϕn
0 , . . . , ϕn

2n−2 is fully inside [0, 1], whereas ϕn
−1

and ϕn
2n−1 can be viewed as ”incomplete”.
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Figure 1

Also of great relevance are the midpoints ηn
i of the support line of each ϕn

i . Thus, for
i = 0, . . . , 2n − 2, we have

ηn
i :=

i

2n
+

1
2
· 1 + ∆

2n
,

and for i ∈ {−1, 2n − 1} we set

ηn
−1 := 0 and ηn

2n−1 := 1.

Equipped with these notations we can introduce the following operator.
Definition 1.2. For f ∈ C[0, 1] and x ∈ [0, 1] the BLaC operator is given by

(2) BLn(f ;x) :=
2n−1∑
i=−1

f(ηn
i ) · ϕn

i (x).

(The abbreviation BLaC refers to ”Blending of Linear and Constant”.)
We first list some elementary facts.
Proposition 1.3.

(i) BLn : C[0, 1] → C[0, 1] is positive and linear;
(ii) BLn interpolates f at the points ηn

i , i = −1, . . . , 2n − 1 (thus also at the
endpoints 0 and 1);
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(iii)
2n−1∑
i=−1

ϕn
i (x) = 1, i.e., BLn reproduces constant functions.

Hence ‖BLn‖ = 1.
Proof. (i) This is obvious from the definition and the positivity of ϕn

i .

(ii) One can easily observe that ϕn
i (ηn

j ) = δi,j (the Kronecker symbol) for i, j =
−1, . . . , 2n − 1. Thus BLn(f ; ηn

j ) = f(ηn
j ) · ϕn

j (ηn
j ) = f(ηn

j ), for j = −1, . . . , 2n − 1.

(iii) For x = 1 we have
2n−1∑
i=−1

ϕn
i (1) = ϕn

2n−1(1) = 1.

Let x ∈
[

k
2n , k+1

2n

)
, k ∈ {0, . . . , 2n − 1}. We discuss separately:

Case 1: For x ∈
[

k
2n , k+∆

2n

)
, we have

2n−1∑
i=−1

ϕn
i (x) = ϕn

k−1(x) + ϕn
k (x) = ϕ∆(2nx− (k − 1)) + ϕ∆(2nx− k)

= − 1
∆

(2nx− k −∆) +
2nx− k

∆
= 1.

Case 2: For x ∈
[

k+∆
2n , k+1

2n

)
we get

2n−1∑
i=−1

ϕn
i (x) = ϕn

k (x) = 1, due to the definition of

ϕ∆.

Hence
2n−1∑
i=−1

ϕn
i (x) = 1 for all x ∈ [0, 1]. �

2. Degree of approximation by the BLn operator

In the present section we investigate the degree of approximation by the BLaC-
operator BLn. The estimates are given in terms of the first and second order modulus
of continuity. We use the following results given by the first author. Here and in the
sequel we put e1(t) := t for t ∈ [a, b].
Theorem 2.1. For a positive linear operator L : C[a, b] → B(Y ), Y ⊆ [a, b] that
reproduces constant functions the following inequality holds:

|L(f ;x)− f(x)| ≤ max
{

1,
1
δ
· L(|e1 − x|;x)

}
· ω̃1(f ; δ)

for all f ∈ C[a, b], x ∈ Y and δ > 0.
Here ω̃1(f ; ·) denotes the least concave majorant of the (classical) first order modulus
of continuity of f ∈ C[a, b].

The above theorem can be formulated for general compact spaces, this version can
be found in [5] (see also [6]).
We also have
Corollary 2.2. Under the assumptions of Theorem 2.1 there holds

|L(f ;x)− f(x)| ≤ 2 ·max
{

1,
1
δ
· L(|e1 − x|;x)

}
· ω1(f ; δ),
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where f ∈ C[a, b], x ∈ Y and δ > 0.

We recall here also a general quantitative result involving ω2; such estimates were
first established by H. Gonska (see [6]) and later refined by R. Păltănea (see [8] or
[9]). Păltănea’s result reads as follows.

Theorem 2.3. If Y is a subset of [a, b], and if L : C[a, b] → B(Y ) is a positive
linear operator satisfying L(e0;x) = 1 for all x ∈ Y , then for f ∈ C[a, b], x ∈ Y and
0 < δ < b−a

2 one has

|L(f ;x)− f(x)| ≤ |L(e1;x)− x| · 1
δ
· ω1(f ; δ) +

(
1 +

1
2
· 1
δ2

L((e1 − x)2;x)
)
· ω2(f ; δ).

We establish next two quantitative statements, one in terms of ω1, the second one
involving both ω1 and ω2.

Proposition 2.4. For any f ∈ C[0, 1] → C[0, 1] and x ∈ [0, 1] there holds

(3) |BLn(f ;x)− f(x)| ≤ 2 · ω1

(
f ;

1
2n

)
.

Proof. First we prove that

|BLn(|e1 − x|;x)| ≤ 1
2n

, for all x ∈ [0, 1].

We have BLn(|e1−x|;x) =
2n−1∑
i=−1

|ηn
i −x| ·ϕn

i (x). We suppose that x ∈
[

k
2n , k+1

2n

)
, k ∈

{0, . . . , 2n − 1}. This excludes only x = 1 in which case we have BLn(|e1− 1|; 1) = 0.
Case 1: For x ∈

[
k
2n , k+∆

2n

)
, we get

BLn(|e1 − x|;x) = (x− ηn
k−1) · ϕn

k−1(x) + (ηn
k − x) · ϕn

k (x)
= (x− ηn

k−1) · ϕn
k−1(x) + (ηn

k − x) · (1− ϕn
k−1(x))

≤ max{ηn
k − x, x− ηn

k−1} ≤ (ηn
k − x + x− ηn

k−1) = ηn
k − ηn

k−1.

Thus, for k = 0 we have BLn(|e1 − x|;x) ≤ ηn
0 − ηn

−1 = 1
2 ·

1+∆
2n ≤ 1

2n . For k > 0 we
get BLn(|e1 − x|;x) ≤ ηn

k − ηn
k−1 = k

2n − k−1
2n = 1

2n .
Case 2: x ∈

[
k+∆
2n , k+1

2n

)
. Then

BLn(|e1 − x|;x) = |ηn
k − x| · ϕn

k (x) = |ηn
k − x| ≤ 1−∆

2n+1
≤ 1

2n
.

Thus BLn(|e1 − x|;x) ≤ 1
2n , for all x ∈ [0, 1]. Applying Corollary 2.2 with δ = 1

2n

yields the estimate (3). �

Proposition 2.5. For any f ∈ C[0, 1] → C[0, 1], all x ∈ [0, 1] and 0 < δ < 1
2 the

following inequality holds:

(4) |BLn(f ;x)− f(x)| ≤ 1−∆
2n+1

· 1
δ
· ω1(f ; δ) +

[
1 +

1
2 · δ2

· 1
22n

]
· ω2(f ; δ).
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Proof. In order to apply Theorem 2.3 we have to find suitable upper bounds for
BLn(e1 − x;x) and for BLn((e1 − x)2;x). In both cases the approach is the same as
for BLn(|e1 − x|;x). First note that BLn(e1 − 1; 1) = 0 and BLn((e1 − 1)2; 1) = 0.
We consider again two cases:
Case 1: x ∈

[
k
2n , k+∆

2n

)
, k ∈ {0, . . . , 2n − 1}.

First we deal with the case k = 0. Here we have

BLn(e1 − x;x) = (ηn
−1 − x) · ϕn

−1(x) + (ηn
0 (x)− x) · ϕn

0 (x)

and after some elementary computations we obtain in this case

BLn(e1 − x;x) =
x(1−∆)

2∆
≤ ∆

2n
· 1−∆

2∆
=

1−∆
2n+1

.

For 1 ≤ k ≤ 2n − 1 we write successively:

BLn(e1 − x;x) = (ηn
k−1 − x) · ϕn

k−1(x) + (ηn
k − x) · ϕn

k (x)

=
1

2n+1
· 1
∆

[
(2k − 1 + ∆− 2n+1x)(−2nx + k + ∆)

+ (2k + 1 + ∆− 2n+1x) · (2nx− k)
]

=
1

2n+1
· 1
∆

[(2nx− k) · (2− 2∆) + ∆(−1 + ∆)]

=
1

2n+1
· 1−∆

∆
[2(2nx− k)−∆]

≤ 1
2n+1

· 1−∆
∆

[
2

(
2n · k + ∆

2n
− k

)
−∆

]
=

1−∆
2n+1

.

We proceed in a similar way for the second moments. Hence we get

BLn((e1 − x)2;x) = (x− ηn
k−1)

2 · ϕn
k−1(x) + (ηn

k − x)2 · ϕn
k (x)

≤ max{(x− ηn
k−1)

2, (ηn
k − x)2} ≤

(
max{(x− ηn

k−1), (η
n
k − x)}

)2

≤
(

1
2n

)2

=
1

22n
.

Case 2: x ∈
[

k+∆
2n , k+1

2n

)
, k ∈ {0, . . . , 2n − 1}. For the first moment we arrive at

|BLn(e1 − x;x)| ≤ BLn(|e1 − x|;x) ≤ 1−∆
2n+1

,

and for the second moment we have

BLn((e1 − x)2;x) = (x− ηn
k )2 · ϕn

k (x) = (x− ηn
k )2 · 1 ≤

(
1−∆
2n+1

)2

≤ 1
22n

.

Thus, we proved that for all x ∈ [0, 1]

|BLn(e1 − x;x)| ≤ 1−∆
2n+1

and BLn((e1 − x)2;x) ≤ 1
22n

.

An application of Theorem 2.3 gives the statement (4). �
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Proposition 2.6. For the particular choice δ = 1
2n , n ≥ 1, the estimate (4) becomes

(5) |BLn(f ;x)− f(x)| ≤ (1−∆)
2

· ω1

(
f ;

1
2n

)
+

3
2
· ω2

(
f ;

1
2n

)
.

Remark 2.7. BLn is an approximation operator, i.e., BLnf converges uniformly
towards f, f ∈ C[0, 1] as n → ∞, see (5). For ∆ = 1, i.e., for piecewise linear

interpolation at 0, 1
2n , 2

2n , . . . , 2n−1
2n , 1 the first term in (5) vanishes and we obtain

a well-known inequality for polygonal line interpolation at the knots listed above.
In fact, it was our aim to obtain for the first moments of the operator an upper
bound involving the term 1 − ∆, in order to have it vanish for the piecewise linear
interpolators.

3. Multivariate approximation

In the sequel we present statements on the degrees of approximation in the bivariate
case. Only the tensor product case of the BLn operators will be discussed here, but
similar results can be given for Boolean sums as well. A general background on tensor
products of univariate operators is provided by [2], [3] and the references cited therein.
For our purposes we employ a convenient inheritance theorem that can be found in
[1].
The quantitative results will be given in terms of partial and total moduli of smooth-
ness of order r, r ∈ {1, 2}, defined on compact intervals I, J ⊂ R, for f ∈ C(I × J)
and δ ≥ 0. We recall here their definitions.

ωr(f ; δ, 0) := sup

{∣∣∣∣∣
r∑

ν=0

(−1)r−ν

(
r

ν

)
· f(x + νh, y)

∣∣∣∣∣ : (x, y), (x + rh, y) ∈ I × J, |h| ≤ δ

}
and

ωr(f ; 0, δ) := sup

{∣∣∣∣∣
r∑

ν=0

(−1)r−ν

(
r

ν

)
· f(x, y + νh)

∣∣∣∣∣ : (x, y), (x, y + rh) ∈ I × J, |h| ≤ δ

}
.

The total moduli of smoothness are

ωr(f ; δ1, δ2) := sup

{∣∣∣∣∣
r∑

ν=0

(−1)r−ν

(
r

ν

)
· f(x + νh1, y + νh2)

∣∣∣∣∣ :

(x, y), (x + rh1, y + rh2) ∈ I × J, |h1| ≤ δ1, |h2| ≤ δ2

}
.

Remark 3.1. The following relation holds between the two types of moduli

(6) {ωr(f ; δ1, 0), ωr(f ; 0, δ2)} ≤ ωr(f ; δ1, δ2).

The inheritance principle mentioned involves discretely defined operators L : C(I) →
C(I ′) and M : C(J) → C(J ′), where I ′ ⊆ I, J ′ ⊆ J are non-trivial compact intervals
of the real axis R, and their parametric extensions to C(I × J). L and M are defined
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on finitely many, mutually distinct points xe, e ∈ E, and yf , f ∈ F , (with suitable
index sets E and F ), and have the form

L(g;x) =
∑
e∈E

g(xe) ·Ae(x),

M(h; y) =
∑
f∈F

h(yf ) ·Bf (y),

with Ae ∈ C(I ′) and Bf ∈ C(J ′) as fundamental functions. Consequently, their
parametric extensions to C(I × J) are given by

xL(f ;x, y) = L(fy;x) =
∑
e∈E

fy(xe) ·Ae(x) =
∑
e∈E

f(xe, y) ·Ae(x),

yM(f ;x, y) = M(fx; y) =
∑
f∈F

fx(yf ) ·Bf (y) =
∑
f∈F

f(x, yf ) ·Bf (y),

with f ∈ C(I × J) and (x, y) ∈ I × J .

For discretely defined operators we have the following representation of the tensor
product of L and M

(7) (xL ◦ yM)(f ;x, y) =
∑
e∈E

∑
f∈F

f(xe, yf ) ·Ae(x) ·Bf (y), f ∈ C(I × J)

(and similarly for yM ◦ xL).
We use the following general quantitative result regarding tensor products.
Theorem 3.2. (see [Th. 37, 1]) Let L and M be defined as above and such that for
fixed r, s ∈ N0

|L(g;x)− g(x)| ≤
r∑

ρ=0

Γρ,L(x) · ωρ(g; Λρ,L(x)), x ∈ I ′, g ∈ C(I) and

|M(h; y)− h(y)| ≤
s∑

γ=0

Γγ,M (y) · ωγ(h; Λγ,M (y)), y ∈ J ′, h ∈ C(J).

Here, Γ and Λ are bounded functions.
(i) Then for (x, y) ∈ I ′ × J ′ and f ∈ C(I × J) the following hold:

|(xL ◦ yM)f(x, y)− f(x, y)| ≤
r∑

ρ=0

Γρ,L(x) · ωρ(f ; Λρ,L(x), 0)

+ ‖L‖ ·
s∑

γ=0

Γγ,M (y) · ωγ(f ; 0,Λγ,M (y)).

(ii) A symmetric upper bound is given by
s∑

γ=0

Γγ,M (y) · ωγ(f ; 0,Λγ,M (y)) +
r∑

ρ=0

Γρ,L(x) · ωρ(f ; Λρ,L(x), 0).
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From (7) we immediately get the explicit representation of the tensor product of two
BLaC operators

(xBLn ◦ yBLm)(f ;x, y) =
2n−1∑
i=−1

2m−1∑
j=−1

f(ηn
i , ηm

j ) · ϕn
i (x) · ϕm

j (y),

and can state
Theorem 3.3. For n, m ∈ N we have

‖(xBLn ◦ yBLm)f − f‖ ≤ (1−∆)ω1

(
f ;

1
2n

, 0
)

+
3
2
ω2

(
f ;

1
2n

, 0
)

+ (1−∆)ω1

(
f ; 0,

1
2m

)
+

3
2
ω2

(
f ; 0,

1
2m

)
≤ 2(1−∆)ω1

(
f ;

1
2n

,
1

2m

)
+ 3ω2

(
f ;

1
2n

,
1

2m

)
.

Proof. The proof is immediate. Take in Theorem 3.2 r = s = 2, Γ0(x) = 0,Γ1(x) =
1−∆,Γ2(x) = 3

2 and Λ1(x) = Λ2(x) = 1
2n , make an analogous choice with respect to

the variable y and use the relation in Proposition 2.6 twice. For the last inequality
use (6). �

Remark 3.4. Similar results can be also achieved for Boolean sums of two BLaC
operators, using, for example, Th. 31 from [1].
A practical application of the bivariate case is image compression. In the diploma
thesis [7] of the third author a method is implemented that enables us to choose in
an appropriate way the parameter ∆ for a given picture (part of it). Examples are
given to illustrate the fact that in most cases it is better to choose ∆ not equal to 0
or 1, in order to obtain a more satisfying picture.
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