Modeling and Simulation of Twin Boundary Motion in Magnetic-Shape-Memory Composites

Martin Lenz, with Sergio Conti and Martin Rumpf

Institute for Applied Mathematics & Institute for Numerical Simulation

Supported by DFG SPP 1239

March 23rd, 2010
Magnetic Shape Memory Materials

E.g. **NiMnGa**
deforms in magnetic field,
Ullakko et al. (1996)

- Fast switching
 \[\approx 10^3 \text{Hz} \]
- Large deformation
 \[\approx 10\% \]
- Large work output
 \[\approx 10^5 \text{Pa} \]

Lai, McCord (IFW Dresden)

\[\rightsquigarrow\text{ Actuators and Sensors}\]
Magnetic Shape Memory Materials

E.g. **NiMnGa**
deforms in magnetic field,
Ullakko et al. (1996)

- Fast switching
 \[\approx 10^3 \text{Hz} \]
- Large deformation
 \[\approx 10\% \]
- Large work output
 \[\approx 10^5 \text{Pa} \]

Ｌai, McCord (IFW Dresden)

⇒ Actuators and Sensors
Introduction

Magnetic Shape Memory Materials

E.g. **NiMnGa**
deforms in magnetic field,
Ullakko et al. (1996)

- Fast switching
 \[\approx 10^3 \text{Hz} \]
- Large deformation
 \[\approx 10\% \]
- Large work output
 \[\approx 10^5 \text{Pa} \]

Lai, McCord (IFW Dresden)

\[\Rightarrow\] Actuators and Sensors
Magnetic Shape Memory Materials

E.g. NiMnGa deforms in magnetic field, Ullakko et al. (1996)

- Fast switching
 \[\approx 10^3 \text{Hz} \]
- Large deformation
 \[\approx 10\% \]
- Large work output
 \[\approx 10^5 \text{Pa} \]

Lai, McCord (IFW Dresden)

→ Actuators and Sensors
Magnetic Shape Memory Materials

E.g. **NiMnGa**
deforms in magnetic field,
Ullakko et al. (1996)

- Fast switching
 \(\approx 10^3 \text{Hz} \)
- Large deformation
 \(\approx 10\% \)
- Large work output
 \(\approx 10^5 \text{Pa} \)

Lai, McCord (IFW Dresden)

\(\rightsquigarrow \) Actuators and Sensors
Magnetic Shape Memory Materials

E.g. NiMnGa deforms in magnetic field, Ullakko et al. (1996)

- Fast switching \(\approx 10^3 \text{Hz} \)
- Large deformation \(\approx 10\% \)
- Large work output \(\approx 10^5 \text{Pa} \)

Lai, McCord (IFW Dresden)

\(\rightsquigarrow \) Actuators and Sensors
Introduction

Magnetic Shape Memory Materials

E.g. **NiMnGa** deforms in magnetic field, Ullakko et al. (1996)

- Fast switching
 \[\approx 10^3 \text{Hz} \]
- Large deformation
 \[\approx 10\% \]
- Large work output
 \[\approx 10^5 \text{Pa} \]

Lai, McCord (IFW Dresden)

\[\implies \text{Actuators and Sensors} \]
Magnetic Shape Memory Materials

E.g. **NiMnGa**
deforms in magnetic field,
Ullakko et al. (1996)

- Fast switching
 \(\approx 10^3 \text{Hz} \)
- Large deformation
 \(\approx 10\% \)
- Large work output
 \(\approx 10^5 \text{Pa} \)

\(\Rightarrow \) Actuators and Sensors

Lai, McCord (IFW Dresden)
Introduction

Magnetic Shape Memory Composites

Polycrystals incompatibilities at grain boundaries

Composites with polymer matrix, cf. Gutfleisch (IFW Dresden)

Blue: Magnetic Shape–Memory Material
Yellow–Red: Background Matrix

Shading encodes elastic energy density (dark for high energy)
Grid shows crystal lattice orientation and deformation
Modeling Twin Boundary Motion

Two-Dimensional Model of the Phase Transformation

Martensitic Variants

\[
\bar{\varepsilon}_1 = \begin{pmatrix} \varepsilon_0 & 0 \\ 0 & -\varepsilon_0 \end{pmatrix}, \quad \bar{\varepsilon}_2 = \begin{pmatrix} -\varepsilon_0 & 0 \\ 0 & \varepsilon_0 \end{pmatrix}
\]

Anisotropy for the Magnetization

\[
m_\gamma_1 (m) = m, \quad m_\gamma_2 (m) = m
\]
Modeling Twin Boundary Motion

Two-Dimensional Model of the Phase Transformation

Martensitic Variants

\[
\bar{\varepsilon}_1 = \begin{pmatrix} \varepsilon_0 & 0 \\ 0 & -\varepsilon_0 \end{pmatrix}
\]

\[
\bar{\varepsilon}_2 = \begin{pmatrix} -\varepsilon_0 & 0 \\ 0 & \varepsilon_0 \end{pmatrix}
\]

Linearized Elastic Transformation Strain

Anisotropy for the Magnetization

\[m_1^{\gamma} = m_2^{\gamma_2} \]

\[m_2^{\gamma_2} = m_2^{\gamma_2} \]
Martensitic Variants

Linearized Elastic Transformation Strain

\[\bar{\varepsilon}_1 = \begin{pmatrix} \varepsilon_0 & 0 \\ 0 & -\varepsilon_0 \end{pmatrix} \]
\[\bar{\varepsilon}_2 = \begin{pmatrix} -\varepsilon_0 & 0 \\ 0 & \varepsilon_0 \end{pmatrix} \]

Anisotropy for the Magnetization \(m \)

\[\gamma_1(m) = m_1^2 \]
\[\gamma_2(m) = m_2^2 \]
Modeling Twin Boundary Motion

Static Model combining Micromagnetism and Elasticity

\[\mathcal{E}[\nu, m, p] = \mathcal{E}_{\text{polymer}} + \mathcal{E}_{\text{elast}} + \mathcal{E}_{\text{MSM}} + \mathcal{E}_{\text{ext}} + \mathcal{E}_{\text{demag}} + \mathcal{E}_{\text{anis}} + \mathcal{E}_{\text{exch}} \]

\[\Omega \subset \mathbb{R}^2 \]
area occupied by composite

\[\omega \subset \Omega \]
area occupied by particles

\[\nu : \Omega \to \mathbb{R}^2 \]
elastic deformation

\[m : \nu(\omega) \to \mathbb{R}^2 \]
magnetization

\[p : \omega \to \{1, 2\} \]
phase / variant parameter

\[\int_{\Omega \setminus \omega} W_{\text{polymer}}(\nabla \nu) \]

\[+ \int_{\omega} W_{\text{MSM}}((\nabla \nu) Q, p) \]

\[- \int_{\nu(\omega)} H_{\text{ext}} \cdot m \]

\[+ \int_{\mathbb{R}^2} \frac{1}{2} |H_d|^2 \]

\[+ \int_{\nu(\omega)} \gamma_p((RQ)^T m) \]

\[+ \int_{\nu(\omega)} \frac{1}{2} d^2 |\nabla m|^2 \]
Modeling Twin Boundary Motion

Static Model combining Micromagnetism and Elasticity

\[\mathcal{E}[\nu, m, p] = \mathcal{E}_{\text{polymer}} + \mathcal{E}_{\text{elast}} + \mathcal{E}_{\text{MSM}} + \mathcal{E}_{\text{ext}} + \mathcal{E}_{\text{demag}} + \mathcal{E}_{\text{anis}} + \mathcal{E}_{\text{exch}} \]

\[= \int_{\Omega \setminus \omega} W_{\text{polymer}}(\nabla \nu) + \int_{\omega} W_{\text{MSM}}((\nabla \nu)Q, p) + H_{\text{ext}} \cdot m + \int_{\nu(\omega)} \frac{1}{2} |H_{d}|^2 + \gamma_p((RQ)^T m) + \int_{\nu(\omega)} \frac{1}{2} d^2|\nabla m|^2 \]

\[\Omega \subset \mathbb{R}^2 \]

area occupied by composite

\[\omega \subset \Omega \]

area occupied by particles

\[\nu : \Omega \rightarrow \mathbb{R}^2 \]

elastic deformation

\[m : \nu(\omega) \rightarrow \mathbb{R}^2 \]

magnetization

\[p : \omega \rightarrow \{1, 2\} \]

phase / variant parameter

Matrix Elasticity

\[W_{\text{polymer}} \]

stored energy density of polymer bulk

\[\nu : \Omega \rightarrow \mathbb{R}^2 \]

deformation
Modeling Twin Boundary Motion

Static Model combining Micromagnetism and Elasticity

\[\mathcal{E}[\nu, m, p] = \mathcal{E}_{\text{elast}} + \mathcal{E}_{\text{polymer}} + \mathcal{E}_{\text{MSM}} + \mathcal{E}_{\text{ext}} + \mathcal{E}_{\text{demag}} + \mathcal{E}_{\text{anis}} + \mathcal{E}_{\text{exch}} + \mathcal{E}_{\text{anis}} \]

\[\int_{\Omega \setminus \omega} W_{\text{polymer}}(\nabla \nu) \]

\[+ \int_{\omega} W_{\text{MSM}}((\nabla \nu)Q, p) \]

\[- \int_{\nu(\omega)} H_{\text{ext}} \cdot m \]

\[+ \int_{\mathbb{R}^2} \frac{1}{2} |H_d|^2 \]

\[+ \int_{\nu(\omega)} \gamma_p((RQ)^T m) \]

\[+ \int_{\nu(\omega)} \frac{1}{2} d^2 |\nabla m|^2 \]

\[\Omega \subset \mathbb{R}^2 \]

area occupied by composite

\[\omega \subset \Omega \]

area occupied by particles

\[\nu : \Omega \rightarrow \mathbb{R}^2 \]

elastic deformation

\[m : \nu(\omega) \rightarrow \mathbb{R}^2 \]

magnetization

\[p : \omega \rightarrow \{1, 2\} \]

phase / variant parameter

Particle Elasticity

\[W_{\text{MSM}} \]

stored energy density of MSM particles, i.e. quadratic distance to transformation strain \(\bar{e}_p \) with respect to crystal lattice orientation

\[Q : \omega \rightarrow SO(2) \]

crystal lattice orientation
Modeling Twin Boundary Motion

Static Model combining Micromagnetism and Elasticity

\[\mathcal{E}[v, m, p] = \mathcal{E}_{\text{polymer}} + \mathcal{E}_{\text{elast}} + \mathcal{E}_{\text{MSM}} + \mathcal{E}_{\text{ext}} + \mathcal{E}_{\text{demag}} + \mathcal{E}_{\text{anis}} + \mathcal{E}_{\text{exch}} \]

\[\Omega \subset \mathbb{R}^2 \quad \text{area occupied by composite} \]
\[\omega \subset \Omega \quad \text{area occupied by particles} \]
\[v : \Omega \rightarrow \mathbb{R}^2 \quad \text{elastic deformation} \]
\[m : v(\omega) \rightarrow \mathbb{R}^2 \quad \text{magnetization} \]
\[p : \omega \rightarrow \{1, 2\} \quad \text{phase / variant parameter} \]

Interaction with External Field

\[H_{\text{ext}} \in \mathbb{R}^2 \quad \text{external magnetic field} \]
Static Model combining Micromagnetism and Elasticity

\[\mathcal{E}[v, m, p] = \mathcal{E}_{\text{polymer}}^{\text{elast}} + \mathcal{E}_{\text{MSM}}^{\text{elast}} + \mathcal{E}_{\text{ext}} + \mathcal{E}_{\text{anis}} + \mathcal{E}_{\text{exch}} + \mathcal{E}_{\text{demag}} \]

Demagnetization

\[H_d : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \quad \text{demagnetization field} \]

\[H_d = \nabla \psi \]

\[\Delta \psi = \text{div} \ m \quad \text{distributionally} \]
Modeling Twin Boundary Motion

Static Model combining Micromagnetism and Elasticity

\[\mathcal{E}[v, m, p] = \mathcal{E}_{\text{elast}}^{\text{polymer}} + \mathcal{E}_{\text{elast}}^{\text{MSM}} + \mathcal{E}_{\text{ext}} + \mathcal{E}_{\text{demag}} + \mathcal{E}_{\text{anis}} + \mathcal{E}_{\text{exch}} \]

- \(\Omega \subset \mathbb{R}^2 \) area occupied by composite
- \(\omega \subset \Omega \) area occupied by particles
- \(v : \Omega \rightarrow \mathbb{R}^2 \) elastic deformation
- \(m : v(\omega) \rightarrow \mathbb{R}^2 \) magnetization
- \(p : \omega \rightarrow \{1, 2\} \) phase / variant parameter

Anisotropy

\(\gamma_p : \mathbb{R}^2 \rightarrow \mathbb{R} \) anisotropy in phase \(p \)

- \(R \in SO(2) \) rotational part of deformation \(\nabla v = RU \)
- \(Q : \omega \rightarrow SO(2) \) crystal lattice orientation
Modeling Twin Boundary Motion

Static Model combining Micromagnetism and Elasticity

\[\mathcal{E}[\nu, m, p] = \mathcal{E}_{\text{polymer}} + \mathcal{E}_{\text{elast}} + \mathcal{E}_{\text{MSM}} + \mathcal{E}_{\text{ext}} + \mathcal{E}_{\text{demag}} + \mathcal{E}_{\text{anis}} + \mathcal{E}_{\text{exch}} \]

\[\Omega \subset \mathbb{R}^2 \quad \text{area occupied by composite} \]
\[\omega \subset \Omega \quad \text{area occupied by particles} \]
\[\nu : \Omega \to \mathbb{R}^2 \quad \text{elastic deformation} \]
\[m : \nu(\omega) \to \mathbb{R}^2 \quad \text{magnetization} \]
\[p : \omega \to \{1, 2\} \quad \text{phase / variant parameter} \]

Magnetic Exchange
\[m : \nu(\omega) \to \mathbb{R}^2 \quad \text{magnetization} \]
Slowly changing external field
\[\Rightarrow \text{rate-independent model without inertia terms} \]

- \(\mathcal{E}(t, x) \) Energy of configuration \(x \) at time \(t \)
- \(\mathcal{D}(\dot{x}) \) Energy dissipated moving with velocity \(\dot{x} \)
Slowly changing external field

Θ rate-independent model without inertia terms

- \(E(t, x) \) Energy of configuration \(x \) at time \(t \)
- \(D(\dot{x}) \) Energy dissipated moving with velocity \(\dot{x} \)

\[
E(t, x(t)) + \int_0^t D(\dot{x}(s)) \, ds = E(s, x(s)) + \int_0^t \partial_t E(s, x(s)) \, ds
\]
Slowly changing external field
\[\xrightarrow{\sim} \text{rate-independent model without inertia terms} \]
- \(\mathcal{E}(t, x) \): Energy of configuration \(x \) at time \(t \)
- \(\mathcal{D}(\dot{x}) \): Energy dissipated moving with velocity \(\dot{x} \)

\[
\mathcal{E}(t, x(t)) + \int_0^t \mathcal{D}(\dot{x}(s)) \, ds = \mathcal{E}(s, x(s)) + \int_0^t \partial_t \mathcal{E}(s, x(s)) \, ds
\]

Implicit time discretization for \(t = \tau, 2\tau, 3\tau, \ldots \)

\[x(t + \tau) \quad \text{is minimizer of} \quad \mathcal{E}(t + \tau, x) + \mathcal{D}(x - x(t)) \]
Rate-Independent Model for Twin Boundary Motion

Slowly changing external field

\leadsto rate-independent model without inertia terms

- $\mathcal{E}(t, x)$ Energy of configuration x at time t
- $\mathcal{D}(\dot{x})$ Energy dissipated moving with velocity \dot{x}

\[
\mathcal{E}(t, x(t)) + \int_0^t \mathcal{D}(\dot{x}(s)) \, ds = \mathcal{E}(s, x(s)) + \int_0^t \partial_t \mathcal{E}(s, x(s)) \, ds
\]

Implicit time discretization for $t = \tau, 2\tau, 3\tau, \ldots$

\[
x(t + \tau) \quad \text{is minimizer of} \quad \mathcal{E}(t + \tau, x) + \mathcal{D}(x - x(t))
\]

Dissipation proportional to volume switched

\[
\mathcal{D}(p - \tilde{p}) = D \int_\omega |p - \tilde{p}|, \quad p \text{ phase index}
\]
Numerical Approximation

Small, Rigid Particles and Homogenization

- Particles are small and hard
 - \(\Rightarrow \) particle deformations are affine
- Particles are single crystals
 - \(\Rightarrow \) lattice orientation \(Q \) constant on each particle

Homogenization

\(E_{\text{exch}} \sim \text{length of twin boundary} \)
Particles are small and hard
 \[\rightsquigarrow \text{particle deformations are affine}\]

Particles are single crystals
 \[\rightsquigarrow \text{lattice orientation } Q \text{ constant on each particle}\]

One planar twin boundary per particle
 \[\rightsquigarrow \text{phase } p \text{ constant on each side}\]

No additional magnetic domain walls
 \[\rightsquigarrow \text{magnetization } m \text{ constant in each twin}\]
 \[\rightsquigarrow E_{\text{exch}} \sim \text{length of twin boundary}\]
- Particles are small and hard
 \(\Rightarrow\) particle deformations are affine

- Particles are single crystals
 \(\Rightarrow\) lattice orientation \(Q\) constant on each particle

- One planar twin boundary per particle
 \(\Rightarrow\) phase \(p\) constant on each side

- No additional magnetic domain walls
 \(\Rightarrow\) magnetization \(m\) constant in each twin
 \(\Rightarrow\) \(E_{\text{exch}}\) \(\sim\) length of twin boundary

- Deformations are (relatively) small
 \(\Rightarrow\) linearized elasticity

- Homogenization
 \(\Rightarrow\) study periodic configurations
Minimize over internal variables

- particle deformation on each side
- twin boundary position
- twin magnetizations
Minimize over internal variables

- particle deformation on each side 8
- twin boundary position 2
- twin magnetizations $1+1$

12 degrees of freedom per particle
Minimize over internal variables

- particle deformation on each side 8
- twin boundary position 2
- twin magnetizations 1+1

12 degrees of freedom per particle

- Energy minimization
 \[\leadsto\] Gradient Descent
- Gradient approximation
 \[\leadsto\] Finite Differences
- Energy evaluation
 (elasticity and stray field)
 \[\leadsto\] Boundary Elements
Problem: Inserting and moving the triple points between twin boundary and particle boundary adds *spurious oscillations* to Boundary Element solution, and thus to the discrete energy.
Problem: Inserting and moving the triple points between twin boundary and particle boundary adds *spurious oscillations* to *Boundary Element* solution, and thus to the discrete energy.

Ansatz: Do not insert triple point. Boundary values depend on distance from twin boundary: *Regularize* distance to make energy *differentiable*.
Problem: Inserting and moving the triple points between twin boundary and particle boundary adds *spurious oscillations* to Boundary Element solution, and thus to the discrete energy.

Ansatz: Do not insert triple point. Boundary values depend on distance from twin boundary: *Regularize* distance to make energy *differentiable.*
Numerical Approximation

Regularity of Discrete Energy

Problem: Inserting and moving the triple points between twin boundary and particle boundary adds *spurious oscillations* to Boundary Element solution, and thus to the discrete energy.

Ansatz: Do not insert triple point. Boundary values depend on distance from twin boundary: *Regularize* distance to make energy differentiable.

Implementation for full model: Polymer elasticity.

\[h = \varepsilon = 0.1 \]

\[h = \varepsilon = 0.025 \]

![Graph of Elastic Energy vs. Position of Twin Boundary for different cases](image1)

![Graph of Elastic Energy vs. Position of Twin Boundary for different cases](image2)
Problem: Inserting and moving the triple points between twin boundary and particle boundary adds *spurious oscillations* to **Boundary Element** solution, and thus to the discrete energy.

Ansatz: Do not insert triple point. Boundary values depend on distance from twin boundary: Regularize distance to make energy *differentiable*.

Implementation for full model: Polymer elasticity.

\[h = \varepsilon = 0.1 \]

\[h = \varepsilon = 0.025 \]

Similar Regularization for Dissipation \(\mathcal{D} \)
Results

Twin Boundary Motion & Hysteresis

Macroscopic Strain in x-direction in %

External Field in T

(1) Field in y-direction

E = 2.8 MPa
Twin Boundary Motion & Hysteresis

Results

Macroscopic Strain in x-direction in %

External Field in T

(2): Field in x-direction

(1) : Field in y-direction

E = 2.8 MPa
Results

Twin Boundary Motion & Hysteresis

-3
-2
-1
0
1
2
3
-1 -0.5 0 0.5 1

Macroscopic Strain in x-direction in %

External Field in T

(2): Field in x-direction

(1) + (3): Field in y-direction

E = 2.8 MPa
Results

Twin Boundary Motion & Hysteresis

- **Macroscopic Strain in x-direction in %**
- **External Field in T**

- **(2): Field in x-direction**
- **(1) + (3): Field in y-direction**

- **E = 1.4 MPa**
- **E = 2.8 MPa**
Results

Twin Boundary Motion

Contact:
martin.lenz@ins.uni-bonn.de