Mathematical Modeling and Simulation of Microstructured MSM Devices

Sergio Conti1, Martin Lenz1,2 and Martin Rumpf2

1) Department of Mathematics, University Duisburg–Essen
2) Institute for Numerical Simulation, University Bonn

SPP 1239 Convention in Wesseling
on September 3rd – 6th, 2007
Overview

1. Introduction

2. Modeling Equilibrium Configurations
 - Micromagnetic–Elastic Model
 - Rigid Particles and Linear Elasticity
 - Results

3. Rate-Independent Modeling
 - Directions of Twin Boundaries
 - 1D Example
 - Twin Boundary Motion
 - First Numerical Results
 - Outlook
Polycrystals and Composites

Microstructures in MSM Materials: Polycrystals and Composites
Microstructures in MSM Materials: Polycrystals and Composites

Polycrystals
Incompatibilities at grain boundaries lead to smaller deformations
Microstructures in MSM Materials: Polycrystals and Composites

Polycrystals
Incompatibilities at grain boundaries lead to smaller deformations
Microstructures in MSM Materials: Polycrystals and Composites

Polycrystals
Incompatibilities at grain boundaries lead to smaller deformations

Composites
Polymer matrix accommodates deformation of small particles
cf. project B8, Gutflieisch et al.
Microstructures in MSM Materials: Polycrystals and Composites

Polycrystals
Incompatibilities at grain boundaries lead to smaller deformations

Composites
Polymer matrix accommodates deformation of small particles
cf. project B8, Gutfleisch et al.
Polycrystals

Composites

Blue: Magnetic Shape–Memory Material

Yellow–Red: Background Matrix

Shading encodes elastic energy density (dark for high energy)

Grid shows crystal lattice orientation and deformation
Full Model for Micromagnetism and Elasticity

\[E[v, m, p] = E_{\text{polymer}}^{\text{elast}} + E_{\text{MSM}}^{\text{elast}} + E_{\text{ext}} + E_{\text{demag}} + E_{\text{anis}} + E_{\text{exch}} = \int_{\Omega \setminus \omega} W_{\text{polymer}}(\nabla v) + \int_{\omega} W_{\text{MSM}}((\nabla v)Q, p) - \int_{v(\omega)} H_{\text{ext}} \cdot m + \int_{\mathbb{R}^d} \frac{1}{2} |H_d|^2 + \int_{v(\omega)} \varphi_p((RQ)^T m) + \int_{v(\omega)} \frac{1}{2} |\nabla m|^2 \]

\[\Omega \subset \mathbb{R}^d \quad \text{area occupied by composite} \]

\[\omega \subset \Omega \quad \text{area occupied by particles} \]

\[\omega = \Omega \quad \text{for polycrystals} \]
Modeling Equilibrium Configurations

Full Model for Micromagnetism and Elasticity

\[E[v, m, p] = E_{\text{polymer}}^{\text{elast}} + E_{\text{MSM}}^{\text{elast}} + E_{\text{ext}} + E_{\text{demag}} + E_{\text{anis}} + E_{\text{exch}} \]

\[\int_{\Omega \setminus \omega} W_{\text{polymer}}(\nabla v) \]

\[+ \int_{\omega} W_{\text{MSM}}((\nabla v)Q, p) \]

\[- \int_{v(\omega)} H_{\text{ext}} \cdot m \]

\[+ \int_{\mathbb{R}^2} \frac{1}{2} |H_d|^2 \]

\[+ \int_{v(\omega)} \varphi_p ((RQ)^T m) \]

\[+ \int_{v(\omega)} \frac{1}{2} |\nabla m|^2 \]

\(\Omega \subset \mathbb{R}^d \) area occupied by composite
\(\omega \subset \Omega \) area occupied by particles
\(\omega = \Omega \) for polycrystals

Matrix Elasticity
(only in composites)

\(W_{\text{polymer}} \) stored energy density of polymer bulk

\(v : \Omega \rightarrow \mathbb{R}^d \) deformation
Full Model for Micromagnetism and Elasticity

\[E[v, m, p] = E_{\text{elast}}^{\text{polymer}} + E_{\text{elast}}^{\text{MSM}} + E_{\text{ext}} + E_{\text{demag}} + E_{\text{anis}} + E_{\text{exch}} \]

- \(\Omega \subset \mathbb{R}^d \): area occupied by composite
- \(\omega \subset \Omega \): area occupied by particles
- \(\omega = \Omega \): for polycrystals

Particle / Grain Elasticity

\(W_{\text{MSM}} \): stored energy density of particles / grains, i.e. quadratic distance to eigenstrain with respect to crystal lattice orientation

- \(p : \omega \rightarrow \{1, \ldots, d\} \): phase parameter in particles / grains
- \(Q : \omega \rightarrow SO(d) \): lattice orientation in particles / grains
- \(v : \Omega \rightarrow \mathbb{R}^d \): deformation

\[\int_{\Omega \setminus \omega} W_{\text{polymer}}(\nabla v) + \int_{\omega} W_{\text{MSM}}((\nabla v)Q, p) - \int_{v(\omega)} H_{\text{ext}} \cdot m + \int_{\mathbb{R}^d} \frac{1}{2} |H_d|^2 + \int_{v(\omega)} \varphi_p((RQ)^T m) + \int_{v(\omega)} \frac{1}{2} |\nabla m|^2 \]
Modeling Equilibrium Configurations \rightarrow Micromagnetic–Elastic Model

Full Model for Micromagnetism and Elasticity

\[E[v, m, p] = E_{\text{elast}}^{\text{polymer}} \]
\[+ E_{\text{elast}}^{\text{MSM}} \]
\[+ E_{\text{ext}} \]
\[+ E_{\text{demag}} \]
\[+ E_{\text{anis}} \]
\[+ E_{\text{exch}} \]

\[= \int_{\Omega \setminus \omega} W_{\text{polymer}}(\nabla v) \]
\[+ \int_{\omega} W_{\text{MSM}}((\nabla v)Q, p) \]
\[- \int_{\nu(\omega)} H_{\text{ext}} \cdot m \]
\[+ \int_{\mathbb{R}^d} \frac{1}{2} |H_d|^2 \]
\[+ \int_{\nu(\omega)} \varphi_p((RQ)^T m) \]
\[+ \int_{\nu(\omega)} \frac{1}{2} |\nabla m|^2 \]

\(\Omega \subset \mathbb{R}^d \) area occupied by composite
\(\omega \subset \Omega \) area occupied by particles
\(\omega = \Omega \) for polycrystals

Interaction with External Field

\(m : \nu(\omega) \rightarrow \mathbb{R}^d \) magnetization
\(H_{\text{ext}} \in \mathbb{R}^d \) external magnetic field
Model Equilibirum Configurations

Micromagnetic–Elastic Model

Full Model for Micromagnetism and Elasticity

\[
E[v, m, p] = E_{\text{elast}} + W_{\text{polymer}}(\nabla v) + \int_{\omega} W_{\text{MSM}}((\nabla v)Q, p)
+ H_{\text{ext}} \cdot m + E_{\text{demag}} + E_{\text{anis}} + E_{\text{exch}}
\]

- \(\Omega \subset \mathbb{R}^d\) area occupied by composite
- \(\omega \subset \Omega\) area occupied by particles
- \(\omega = \Omega\) for polycrystals

Demagnetization

- \(m : \mathbb{R}^d \to \mathbb{R}^d\) magnetization
- \(H_d : \mathbb{R}^d \to \mathbb{R}^d\) demagnetization field

\[
H_d = \nabla \psi \\
\Delta \psi = \text{div} m \quad \text{distributionally}
\]
Full Model for Micromagnetism and Elasticity

\[E[v, m, p] = E_{\text{elast}}^{\text{polymer}} = \int_{\Omega \setminus \omega} W_{\text{polymer}}(\nabla v) + \int_{\omega} W_{\text{MSM}}((\nabla v)Q, p) + \int_{v(\omega)} H_{\text{ext}} \cdot m + \int_{\mathbb{R}^d} \frac{1}{2} |H_d|^2 + \int_{v(\omega)} \varphi_p((RQ)^T m) + \int_{v(\omega)} \frac{1}{2} |\nabla m|^2 \]

- **Anisotropy**
 - \(m : \nu(\omega) \to \mathbb{R}^d \) magnetization
 - \(p : \omega \to \{1, \ldots d\} \) phase parameter in particles / grains
 - \(\varphi_p : \mathbb{R}^d \to \mathbb{R} \) anisotropy in phase \(p \) applied to magnetization in deformed lattice
 - \(R \in \text{SO}(d) \) rotational part of deformation \(\nabla u = RU \)
 - \(Q : \omega \to \text{SO}(d) \) lattice orientation in particles / grains

\(\Omega \subset \mathbb{R}^d \) area occupied by composite

\(\omega \subset \Omega \) area occupied by particles

\(\omega = \Omega \) for polycrystals
Modeling Equilibrium Configurations ➞ Micromagnetic–Elastic Model

Full Model for Micromagnetism and Elasticity

\[E[v, m, p] = E_{\text{polymer}}^{\text{elast}} = \int_{\Omega \setminus \omega} W_{\text{polymer}}(\nabla v) \]

\[+ E_{\text{MSM}}^{\text{elast}} \]

\[+ E_{\text{ext}} \]

\[+ E_{\text{demag}} \]

\[+ E_{\text{anis}} \]

\[+ E_{\text{exch}} \]

\[\Omega \subset \mathbb{R}^d \quad \text{area occupied by composite} \]

\[\omega \subset \Omega \quad \text{area occupied by particles} \]

\[\omega = \Omega \quad \text{for polycrystals} \]

Magnetic Exchange

\[m : v(\omega) \rightarrow \mathbb{R}^d \quad \text{magnetization} \]
Reduction to Small, Rigid Particles and Homogenization

- Particles are small and hard
 - \(\Rightarrow \) particle deformations are affine
- Particles are single crystals
 - \(\Rightarrow \) lattice orientation \(Q \) constant on each particle / grain
- Particles / grains are single-domain
 - \(\Rightarrow \) phase \(p \) and magnetization \(m \) constant on particles / grains
 - \(\Rightarrow \) \(E_{\text{exch}} = 0 \)
- Deformations are (relatively) small
 - \(\Rightarrow \) linearized elasticity
- Large numbers of small particles or grains, Fully resolved simulation not feasible
 - \(\Rightarrow \) Homogenization: Study periodic configurations
Polycrystals versus Composites

2° 8° ∼ 20° (random) misorientation
Modeling Equilibrium Configurations

Results

Polycrystals versus Composites

2° 8° ~ 20° (random) misorientation
Polycrystals versus Composites

2° 8° ~ 20° (random) misorientation

6% 4% 2% strain

4% 4% 3% strain
Modeling Equilibrium Configurations

Polycrystals versus Composites

2°
8°
≈ 20° (random) misorientation

close to single crystal

6%
4%
2% strain

4%
4%
3% strain
Modeling Equilibrium Configurations ➤ Results

Polycrystals versus Composites

2° close to single crystal

8° 4% strain

2° (random) misorientation

6% 4% 2% strain

accommodation of incompatibilities

4% 4% 3% strain
Polycrystals versus Composites

- 2° close to single crystal
- 8°
- ~ 20° (random) misorientation

6% strain
4% strain
2% strain

accommodation of incompatibilities

Effect of Polymer Elasticity

Plot strain and work output for different polymer elastic moduli.

\[\text{Longer particles, (somewhat) softer polymer} \]

(In comparison: For particles is \(E \approx 100\,000 \, \text{MPa} \))
Demagnetization field

\[\int |\nabla \psi|^2 = \int |\nabla \psi_{\text{micro}}|^2 + \int |\nabla \psi_{\text{macro}}|^2 \]

(Up to now only \(\psi_{\text{micro}} \))

Can macroscopic part \(\psi_{\text{macro}} \) induce additional scales?
Demagnetization field

\[\int |\nabla \psi|^2 = \int |\nabla \psi_{\text{micro}}|^2 + \int |\nabla \psi_{\text{macro}}|^2 \]
(Up to now only \(\psi_{\text{micro}} \))

Can macroscopic part \(\psi_{\text{macro}} \) induce additional scales?

Analytical computation of \(\psi_{\text{macro}} \) for circular domain
Influence of Macroscopic Demagnetization

Demagnetization field

\[\int |\nabla \psi|^2 = \int |\nabla \psi_{\text{micro}}|^2 + \int |\nabla \psi_{\text{macro}}|^2 \]

(Up to now only \(\psi_{\text{micro}} \))

Can macroscopic part \(\psi_{\text{macro}} \) induce additional scales?

Analytical computation of \(\psi_{\text{macro}} \) for circular domain

Compute cell with 4 particles to allow larger periodicity
Demagnetization and External Field

- **No external field**
 - Average magnetization zero
 - $\psi_{macro} = 0$, favored by E_{demag}
Demagnetization and External Field

- Strong external field
- Aligned magnetization, favored by E_{ext}
Intermediate stage (b) between zero-average and fully-aligned magnetization
Further length scales possible?
Try larger computational cell
Additional Periodicity Scales

Some additional configurations in the phase diagram
Twin Boundaries in Particles

Up to now: Particles / grains consist of one *single variant*

Next step: *One twin boundaries* in a particle
Twin Boundaries in Particles

Up to now: Particles / grains consist of one *single variant*

Next step: **One twin boundaries** in a particle

Possible directions of twin boundaries?
Deformation has to be continuous
\[\nabla u \cdot \tau \text{ continuous for tangent } \tau \]
\[\nabla_+ u - \nabla_- u = \nu \otimes \nu \text{ for normal } \nu \text{ and some } \nu \]
Up to now: Particles / grains consist of one **single variant**

Next step: **One twin boundaries** in a particle

Possible directions of twin boundaries?

Deformation has to be continuous

\[\nabla u \cdot \tau \text{ continuous for tangent } \tau \]

\[\nabla_+ u - \nabla_- u = \mathbf{v} \otimes \mathbf{v} \text{ for normal } \mathbf{v} \text{ and some } \mathbf{v} \]

Directions \(\mathbf{v} \) where \(Q \bar{\varepsilon}_1 - \bar{\varepsilon}_2 = \mathbf{v} \otimes \mathbf{v} \) for some \(Q \in SO(2) \)?
Up to now: Particles / grains consist of one single variant

Next step: One twin boundaries in a particle

Possible directions of twin boundaries?
Deformation has to be continuous
\[\nabla u \cdot \tau \text{ continuous for tangent } \tau \]
\[\nabla_+ u - \nabla_- u = \nu \otimes \nu \text{ for normal } \nu \text{ and some } \nu \]

Directions \(\nu \) where \(Q \bar{\varepsilon}_1 - \bar{\varepsilon}_2 = \nu \otimes \nu \) for some \(Q \in SO(2) \)?

\[\nu = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ or } \nu = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \]
Moving twin boundaries with changing external field
Moving twin boundaries with changing external field

Change in external field slow

→ Rate independent model without inertia terms, energy generated is completely dissipated

Why model the process as rate-independent?

→ 1D example
Mass point moving in a periodic potential with **slow external forcing**

\[
\begin{align*}
\ddot{x} & = -\gamma \dot{x} + \kappa (vt - x) + a \cos(n\pi x) \\
\text{acceleration} & \quad \text{friction} \quad \text{external forcing} \quad \text{periodic potential}
\end{align*}
\]
Rate-Independent Modeling ➞ 1D Example

Equations of Motion

Mass point moving in a periodic potential with slow external forcing

\[m\ddot{x} = -\gamma \dot{x} + \kappa (vt - x) + a\cos(n\pi x) \]

acceleration, friction, external forcing, periodic potential

Compute energy differences by integrating \(\int_0^\tau \dot{x} \, dt \) over periodic interval \([0; \tau]\) with \(x(\tau) = x(0) + 2/n, \dot{x}(\tau) = \dot{x}(0) \)

\[\frac{1}{2} m(\dot{x})^2\bigg|_0^\tau = -\gamma \int_0^\tau (\dot{x})^2 \, dt + \int_0^\tau \partial_t \mathcal{E}(t, x(t)) \, dt - \mathcal{E}(t, x(t))\bigg|_0^\tau \]

kinetic, friction, power, potential

with potential \(\mathcal{E}(t, x) = \frac{1}{2} \kappa (vt - x)^2 - \frac{a}{n\pi} \sin(n\pi x) \)
\[\frac{1}{2} m (\dot{x})^2 \bigg|_0^\tau = -\gamma \int_0^\tau (\dot{x})^2 \, dt + \int_0^\tau \partial_t \mathcal{E}(t, x(t)) \, dt - \mathcal{E}(t, x(t)) \bigg|_0^\tau \]

with potential \(\mathcal{E}(t, x) = \frac{1}{2} \kappa (vt - x)^2 - \frac{a}{n\pi} \sin(n\pi x) \)
Rate-Independent Modeling ➞ 1D Example

Energy on Slow Timescale

\[\left. \frac{1}{2} m(\dot{x})^2 \right|_0^\tau = -\gamma \int_0^\tau (\dot{x})^2 \, dt + \int_0^\tau \partial_t \mathcal{E}(t, x(t)) \, dt - \mathcal{E}(t, x(t)) \bigg|_0^\tau \]

with potential \(\mathcal{E}(t, x) = \frac{1}{2} \kappa (vt - x)^2 - \frac{a}{n\pi} \sin(n\pi x) \)

\[\left. \frac{1}{2} m(\dot{x})^2 \right|_0^\tau = -\gamma \int_0^\tau (\dot{x})^2 \, dt + \int_0^\tau \partial_t \mathcal{E}(t, x(t)) \, dt - \mathcal{E}(t, x(t)) \bigg|_0^\tau \]

with potential \(\mathcal{E}(t, x) = \frac{1}{2} \kappa (vt - x)^2 \)

since \(\sin(n\pi x(0)) = \sin(n\pi x(\tau)) \)
Rate-Independent Modeling
1D Example

Energy on Slow Timescale

\[
\frac{1}{2} m (\dot{x})^2 \bigg|_0^\tau = -\gamma \int_0^\tau (\dot{x})^2 \, dt + \int_0^\tau \partial_t E(t, x(t)) \, dt - E(t, x(t)) \bigg|_0^\tau
\]

with potential \(E(t, x) = \frac{1}{2} \kappa (vt - x)^2 - \frac{a}{n\pi} \sin(n\pi x) \)

\[
0 = -\gamma \int_0^\tau (\dot{x})^2 \, dt + \int_0^\tau \partial_t E(t, x(t)) \, dt - E(t, x(t)) \bigg|_0^\tau
\]

with potential \(E(t, x) = \frac{1}{2} \kappa (vt - x)^2 \)

since \(\dot{x}(0) = \dot{x}(\tau) \)
Rate-Independent Modeling

1D Example

Energy on Slow Timescale

\[\frac{1}{2} m (\dot{x})^2 \bigg|_0^\tau = -\gamma \int_0^\tau (\dot{x})^2 \, dt + \int_0^\tau \partial_t E(t, x(t)) \, dt - E(t, x(t)) \bigg|_0^\tau \]

with potential \(E(t, x) = \frac{1}{2} \kappa (vt - x)^2 - \frac{a}{n\pi} \sin(n\pi x) \)

\[0 = -\gamma D + \int_0^\tau \partial_t E(t, x(t)) \, dt - E(t, x(t)) \bigg|_0^\tau \]

with potential \(E(t, x) = \frac{1}{2} \kappa (vt - x)^2 \)

Scale separation, external force slow \(\sim \) energy completely dissipated on fast time scale, cf. damped harmonic oscillator

\[\int_0^\tau (\dot{x})^2 \, dt \approx \int_0^\infty (\dot{x})^2 \, dt \approx \int_0^\infty C \left(\exp\left(-\frac{\gamma}{m} t\right) \sin(\omega t) \right)^2 \, dt \approx D \]
Rate-Independent Modeling

1D Example

Energy on Slow Timescale

\[
\frac{1}{2} m (\dot{x})^2 \bigg|_0^\tau = -\gamma \int_0^\tau (\dot{x})^2 \, dt + \int_0^\tau \partial_t \mathcal{E}(t, x(t)) \, dt - \mathcal{E}(t, x(t)) \bigg|_0^\tau
\]

with potential \(\mathcal{E}(t, x) = \frac{1}{2} \kappa (vt - x)^2 - \frac{a}{n\pi} \sin(n\pi x) \)

\[
\mathcal{E}(\tau, x(\tau)) + \gamma D = \int_0^\tau \partial_t \mathcal{E}(t, x(t)) \, dt + \mathcal{E}(0, x(0))
\]

new energy dissipated energy energy added old energy

with potential \(\mathcal{E}(t, x) = \frac{1}{2} \kappa (vt - x)^2 \)
For one energy well

\[\mathcal{E}(\tau, x(\tau)) + \gamma D \]

\[= \mathcal{E}(0, x(0)) + \int_{0}^{\tau} \partial_t \mathcal{E}(t, x(t)) \, dt \]
For one energy well

\[E(\tau, x(\tau)) + \gamma D = E(0, x(0)) + \int_0^{\tau} \partial_t E(t, x(t)) \, dt \]

Dissipation is 1–homogeneous in the number of wells traversed

\[D(x, \tilde{x}) = \gamma D \frac{2}{n} |x - \tilde{x}| \]
For one energy well

\[\mathcal{E}(\tau, x(\tau)) + \gamma D \]

\[= \mathcal{E}(0, x(0)) + \int_0^\tau \partial_t \mathcal{E}(t, x(t)) \, dt \]

Dissipation is 1–homogeneous in the number of wells traversed

\[\mathcal{D}(x, \tilde{x}) = \gamma D \frac{2}{n} |x - \tilde{x}| \]

Implicit time discretization

\[\mathcal{E}(t, x(t)) + \mathcal{D}(x(0), x(t)) = \mathcal{E}(0, x(0)) + \int_0^t \partial_t \mathcal{E}(s, x(s)) \, ds \]

\[x(t) = \arg \min_{\xi} (\mathcal{E}(t, \xi) + \mathcal{D}(x(t - \tau), \xi)) \]
Dissipation Model

- Analogy to example
 - Wells \approx Single atoms switching? No, timescale too slow
Analogy to example
Wells \approx Single atoms switching? No, timescale too slow
Wells \approx Interface traveling from one defect to the next

(Likhachev and Ullakko 2000)
Analogy to example
Wells ≈ Single atoms switching? No, timescale too slow
Wells ≈ Interface traveling from one defect to the next

\(D(p, \tilde{p}) = D \int_{\omega} |p - \tilde{p}|, \quad p \text{ phase index} \)
Rate-Independent Modeling ➤ Twin Boundary Motion

Estimation of Dissipation Constant

\[\mathcal{E}(t, x(t)) + \mathcal{D}(x(0), x(t)) = \mathcal{E}(0, x(0)) + \int_0^t \partial_t \mathcal{E}(s, x(s)) \, ds \]

\[\mathcal{D}(p, \tilde{p}) = \mathcal{D} \mathcal{D} \int_\omega |p - \tilde{p}|, \quad p \text{ phase index} \]

Estimate \(D \)?
Estimation of Dissipation Constant

\[\mathcal{E}(t, x(t)) + \mathcal{D}(x(0), x(t)) = \mathcal{E}(0, x(0)) + \int_0^t \partial_t \mathcal{E}(s, x(s)) \, ds \]

\[\mathcal{D}(p, \tilde{p}) = DD \int_\omega |p - \tilde{p}|, \quad p \text{ phase index} \]

Estimate \(D \)? Consider switching in a single crystal

Energy gain by switching magnetization (from \(\mathcal{E}_{\text{ext}} \))

\[-\frac{M_s}{\mu_0} \approx 0.5 \text{ M Pa/T} \quad \text{per unit volume} \]

For minimal switching field of \(\approx 0.25 \text{ T} \), this balances with dissipation per unit volume

\[D \approx 0.125 \text{ M Pa} \]
Motion of one interface by increasing H_{ext}
Simplified model, coarse numerics

![Graph showing stretch in % and external field in T against interface position.]

![Graph showing stored energy and dissipated energy against interface position.]}
Motion of one interface by increasing H_{ext}
Simplified model, coarse numerics
Rate-Independent Modeling ➤ First Numerical Results

Motion of a Twin Boundary in a Particle

Motion of one interface by increasing H_{ext}

Simplified model, coarse numerics
Motion of one interface by increasing H_{ext}
Simplified model, coarse numerics
Motion of a Twin Boundary in a Particle

Motion of one interface by increasing H_{ext}
Simplified model, coarse numerics

![Graphs showing stretch in %, external field in T, stored energy, and dissipated energy as functions of interface position.](image-url)
Motion of one interface by increasing H_{ext}
Simplified model, coarse numerics
Motion of one interface by increasing H_{ext}
Simplified model, coarse numerics
Motion of a Twin Boundary in a Particle

Motion of one interface by increasing H_{ext}
Simplified model, coarse numerics
Motion of one interface by increasing H_{ext}
Simplified model, coarse numerics
Motion of one interface by increasing H_{ext}

Simplified model, coarse numerics
Motion of a Twin Boundary in a Particle

Motion of one interface by increasing H_{ext}
Simplified model, coarse numerics

Hysteresis
Interesting Questions

Nucleation: Tip or center?
Interesting Questions

Nucleation: Tip or center?

Effective H_{ext} – strain - relation
Interesting Questions

Nucleation: Tip or center?

Effective H_{ext} – strain - relation

http://analysis.math.uni-duisburg.de/research/spp1239.html